Step |
Hyp |
Ref |
Expression |
1 |
|
elovolm.1 |
⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } |
2 |
1
|
elovolm |
⊢ ( 𝐵 ∈ 𝑀 ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
3 |
|
elovolmlem |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
4 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝑓 ) = ( ( abs ∘ − ) ∘ 𝑓 ) |
5 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) |
6 |
4 5
|
ovolsf |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
7 |
|
1nn |
⊢ 1 ∈ ℕ |
8 |
|
ffvelrn |
⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ∧ 1 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ( 0 [,) +∞ ) ) |
9 |
6 7 8
|
sylancl |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ( 0 [,) +∞ ) ) |
10 |
|
elrege0 |
⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ( 0 [,) +∞ ) ↔ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ℝ ∧ 0 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ) ) |
11 |
10
|
simprbi |
⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ( 0 [,) +∞ ) → 0 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ) |
12 |
9 11
|
syl |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 0 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ) |
13 |
6
|
frnd |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ( 0 [,) +∞ ) ) |
14 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
15 |
13 14
|
sstrdi |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* ) |
16 |
6
|
ffnd |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) Fn ℕ ) |
17 |
|
fnfvelrn |
⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) Fn ℕ ∧ 1 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ) |
18 |
16 7 17
|
sylancl |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ) |
19 |
|
supxrub |
⊢ ( ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* ∧ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
20 |
15 18 19
|
syl2anc |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
21 |
|
0xr |
⊢ 0 ∈ ℝ* |
22 |
14 9
|
sselid |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ℝ* ) |
23 |
|
supxrcl |
⊢ ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) |
24 |
15 23
|
syl |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) |
25 |
|
xrletr |
⊢ ( ( 0 ∈ ℝ* ∧ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∈ ℝ* ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ∈ ℝ* ) → ( ( 0 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∧ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → 0 ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
26 |
21 22 24 25
|
mp3an2i |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( 0 ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ∧ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) ‘ 1 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → 0 ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
27 |
12 20 26
|
mp2and |
⊢ ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 0 ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
28 |
3 27
|
sylbi |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 0 ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
29 |
|
breq2 |
⊢ ( 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → ( 0 ≤ 𝐵 ↔ 0 ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
30 |
28 29
|
syl5ibrcom |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → 0 ≤ 𝐵 ) ) |
31 |
30
|
adantld |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → 0 ≤ 𝐵 ) ) |
32 |
31
|
rexlimiv |
⊢ ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝐵 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → 0 ≤ 𝐵 ) |
33 |
2 32
|
sylbi |
⊢ ( 𝐵 ∈ 𝑀 → 0 ≤ 𝐵 ) |