| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pf1const.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | pf1const.q | ⊢ 𝑄  =  ran  ( eval1 ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( eval1 ‘ 𝑅 )  =  ( eval1 ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( Poly1 ‘ 𝑅 )  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( algSc ‘ ( Poly1 ‘ 𝑅 ) )  =  ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) | 
						
							| 6 | 3 4 1 5 | evl1sca | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( ( eval1 ‘ 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) )  =  ( 𝐵  ×  { 𝑋 } ) ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑅  ↑s  𝐵 )  =  ( 𝑅  ↑s  𝐵 ) | 
						
							| 8 | 3 4 7 1 | evl1rhm | ⊢ ( 𝑅  ∈  CRing  →  ( eval1 ‘ 𝑅 )  ∈  ( ( Poly1 ‘ 𝑅 )  RingHom  ( 𝑅  ↑s  𝐵 ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( eval1 ‘ 𝑅 )  ∈  ( ( Poly1 ‘ 𝑅 )  RingHom  ( 𝑅  ↑s  𝐵 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) )  =  ( Base ‘ ( Poly1 ‘ 𝑅 ) ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ ( 𝑅  ↑s  𝐵 ) )  =  ( Base ‘ ( 𝑅  ↑s  𝐵 ) ) | 
						
							| 12 | 10 11 | rhmf | ⊢ ( ( eval1 ‘ 𝑅 )  ∈  ( ( Poly1 ‘ 𝑅 )  RingHom  ( 𝑅  ↑s  𝐵 ) )  →  ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅  ↑s  𝐵 ) ) ) | 
						
							| 13 |  | ffn | ⊢ ( ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅  ↑s  𝐵 ) )  →  ( eval1 ‘ 𝑅 )  Fn  ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 14 | 9 12 13 | 3syl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( eval1 ‘ 𝑅 )  Fn  ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 15 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 17 | 4 5 1 10 | ply1sclf | ⊢ ( 𝑅  ∈  Ring  →  ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) : 𝐵 ⟶ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) : 𝐵 ⟶ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 19 |  | ffvelcdm | ⊢ ( ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) : 𝐵 ⟶ ( Base ‘ ( Poly1 ‘ 𝑅 ) )  ∧  𝑋  ∈  𝐵 )  →  ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 20 | 18 19 | sylancom | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 21 |  | fnfvelrn | ⊢ ( ( ( eval1 ‘ 𝑅 )  Fn  ( Base ‘ ( Poly1 ‘ 𝑅 ) )  ∧  ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 )  ∈  ( Base ‘ ( Poly1 ‘ 𝑅 ) ) )  →  ( ( eval1 ‘ 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) )  ∈  ran  ( eval1 ‘ 𝑅 ) ) | 
						
							| 22 | 14 20 21 | syl2anc | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( ( eval1 ‘ 𝑅 ) ‘ ( ( algSc ‘ ( Poly1 ‘ 𝑅 ) ) ‘ 𝑋 ) )  ∈  ran  ( eval1 ‘ 𝑅 ) ) | 
						
							| 23 | 6 22 | eqeltrrd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( 𝐵  ×  { 𝑋 } )  ∈  ran  ( eval1 ‘ 𝑅 ) ) | 
						
							| 24 | 23 2 | eleqtrrdi | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( 𝐵  ×  { 𝑋 } )  ∈  𝑄 ) |