| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgnbgreunbgr.g |
⊢ 𝐺 = ( 5 gPetersenGr 2 ) |
| 2 |
|
pgnbgreunbgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 3 |
|
pgnbgreunbgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 4 |
|
pgnbgreunbgr.n |
⊢ 𝑁 = ( 𝐺 NeighbVtx 𝑋 ) |
| 5 |
|
eqtr3 |
⊢ ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ) → 𝐿 = 𝐾 ) |
| 6 |
|
eqneqall |
⊢ ( 𝐾 = 𝐿 → ( 𝐾 ≠ 𝐿 → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) |
| 7 |
6
|
impd |
⊢ ( 𝐾 = 𝐿 → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 8 |
7
|
eqcoms |
⊢ ( 𝐿 = 𝐾 → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 9 |
5 8
|
syl |
⊢ ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 10 |
9
|
a1d |
⊢ ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ) → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) |
| 11 |
10
|
ex |
⊢ ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 → ( 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) ) |
| 12 |
|
1ex |
⊢ 1 ∈ V |
| 13 |
|
vex |
⊢ 𝑦 ∈ V |
| 14 |
12 13
|
op2ndd |
⊢ ( 𝑋 = 〈 1 , 𝑦 〉 → ( 2nd ‘ 𝑋 ) = 𝑦 ) |
| 15 |
|
oveq1 |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( 2nd ‘ 𝑋 ) + 2 ) = ( 𝑦 + 2 ) ) |
| 16 |
15
|
oveq1d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) = ( ( 𝑦 + 2 ) mod 5 ) ) |
| 17 |
16
|
opeq2d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ) |
| 18 |
17
|
eqeq2d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ↔ 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ) ) |
| 19 |
|
opeq2 |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → 〈 0 , ( 2nd ‘ 𝑋 ) 〉 = 〈 0 , 𝑦 〉 ) |
| 20 |
19
|
eqeq2d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ↔ 𝐾 = 〈 0 , 𝑦 〉 ) ) |
| 21 |
18 20
|
anbi12d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) ↔ ( 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , 𝑦 〉 ) ) ) |
| 22 |
14 21
|
syl |
⊢ ( 𝑋 = 〈 1 , 𝑦 〉 → ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) ↔ ( 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , 𝑦 〉 ) ) ) |
| 23 |
1 2 3 4
|
pgnbgreunbgrlem2lem1 |
⊢ ( ( ( ( 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ∧ { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ) → ¬ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) |
| 24 |
23
|
pm2.21d |
⊢ ( ( ( ( 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ∧ { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ) → ( { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 25 |
24
|
expimpd |
⊢ ( ( ( 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 26 |
25
|
ex |
⊢ ( ( 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , 𝑦 〉 ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 27 |
26
|
adantld |
⊢ ( ( 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , 𝑦 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 28 |
22 27
|
biimtrdi |
⊢ ( 𝑋 = 〈 1 , 𝑦 〉 → ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) |
| 30 |
29
|
expdcom |
⊢ ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 → ( 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) ) |
| 31 |
|
oveq1 |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( 2nd ‘ 𝑋 ) − 2 ) = ( 𝑦 − 2 ) ) |
| 32 |
31
|
oveq1d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) = ( ( 𝑦 − 2 ) mod 5 ) ) |
| 33 |
32
|
opeq2d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) |
| 34 |
33
|
eqeq2d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ↔ 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) ) |
| 35 |
18 34
|
anbi12d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) ↔ ( 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) ) ) |
| 36 |
14 35
|
syl |
⊢ ( 𝑋 = 〈 1 , 𝑦 〉 → ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) ↔ ( 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) ) ) |
| 37 |
1 2 3 4
|
pgnbgreunbgrlem2lem3 |
⊢ ( ( ( ( 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ∧ { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ) → ¬ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) |
| 38 |
37
|
pm2.21d |
⊢ ( ( ( ( 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ∧ { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ) → ( { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 39 |
38
|
expimpd |
⊢ ( ( ( 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 40 |
39
|
ex |
⊢ ( ( 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 41 |
40
|
adantld |
⊢ ( ( 𝐿 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 42 |
36 41
|
biimtrdi |
⊢ ( 𝑋 = 〈 1 , 𝑦 〉 → ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) |
| 44 |
43
|
expdcom |
⊢ ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 → ( 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) ) |
| 45 |
11 30 44
|
3jaod |
⊢ ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 → ( ( 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∨ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) ) |
| 46 |
14
|
adantr |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( 2nd ‘ 𝑋 ) = 𝑦 ) |
| 47 |
19
|
eqeq2d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ↔ 𝐿 = 〈 0 , 𝑦 〉 ) ) |
| 48 |
17
|
eqeq2d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ↔ 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ) ) |
| 49 |
47 48
|
anbi12d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ) ↔ ( 𝐿 = 〈 0 , 𝑦 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ) ) ) |
| 50 |
46 49
|
syl |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ) ↔ ( 𝐿 = 〈 0 , 𝑦 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ) ) ) |
| 51 |
|
prcom |
⊢ { 〈 0 , 𝑏 〉 , 𝐿 } = { 𝐿 , 〈 0 , 𝑏 〉 } |
| 52 |
51
|
eleq1i |
⊢ ( { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ↔ { 𝐿 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ) |
| 53 |
1 2 3 4
|
pgnbgreunbgrlem2lem1 |
⊢ ( ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ∧ { 𝐿 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ) → ¬ { 〈 0 , 𝑏 〉 , 𝐾 } ∈ 𝐸 ) |
| 54 |
|
prcom |
⊢ { 𝐾 , 〈 0 , 𝑏 〉 } = { 〈 0 , 𝑏 〉 , 𝐾 } |
| 55 |
54
|
eleq1i |
⊢ ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ↔ { 〈 0 , 𝑏 〉 , 𝐾 } ∈ 𝐸 ) |
| 56 |
|
pm2.21 |
⊢ ( ¬ { 〈 0 , 𝑏 〉 , 𝐾 } ∈ 𝐸 → ( { 〈 0 , 𝑏 〉 , 𝐾 } ∈ 𝐸 → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 57 |
55 56
|
biimtrid |
⊢ ( ¬ { 〈 0 , 𝑏 〉 , 𝐾 } ∈ 𝐸 → ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 58 |
53 57
|
syl |
⊢ ( ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ∧ { 𝐿 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ) → ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 59 |
58
|
ex |
⊢ ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( { 𝐿 , 〈 0 , 𝑏 〉 } ∈ 𝐸 → ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 60 |
52 59
|
biimtrid |
⊢ ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 → ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 61 |
60
|
impcomd |
⊢ ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 62 |
61
|
ex |
⊢ ( ( 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 0 , 𝑦 〉 ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 63 |
62
|
ancoms |
⊢ ( ( 𝐿 = 〈 0 , 𝑦 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 64 |
63
|
adantld |
⊢ ( ( 𝐿 = 〈 0 , 𝑦 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 65 |
50 64
|
biimtrdi |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) |
| 66 |
65
|
expdcom |
⊢ ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) ) |
| 67 |
|
eqtr3 |
⊢ ( ( 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∧ 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) → 𝐾 = 𝐿 ) |
| 68 |
67
|
ancoms |
⊢ ( ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∧ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) → 𝐾 = 𝐿 ) |
| 69 |
68 6
|
syl |
⊢ ( ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∧ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) → ( 𝐾 ≠ 𝐿 → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) |
| 70 |
69
|
impd |
⊢ ( ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∧ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 71 |
70
|
a1d |
⊢ ( ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∧ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) |
| 72 |
71
|
ex |
⊢ ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) ) |
| 73 |
47 34
|
anbi12d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) ↔ ( 𝐿 = 〈 0 , 𝑦 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) ) ) |
| 74 |
46 73
|
syl |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) ↔ ( 𝐿 = 〈 0 , 𝑦 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) ) ) |
| 75 |
1 2 3 4
|
pgnbgreunbgrlem2lem2 |
⊢ ( ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ∧ { 𝐿 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ) → ¬ { 〈 0 , 𝑏 〉 , 𝐾 } ∈ 𝐸 ) |
| 76 |
75 57
|
syl |
⊢ ( ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ∧ { 𝐿 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ) → ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 77 |
76
|
ex |
⊢ ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( { 𝐿 , 〈 0 , 𝑏 〉 } ∈ 𝐸 → ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 78 |
52 77
|
biimtrid |
⊢ ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 → ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 79 |
78
|
impcomd |
⊢ ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 80 |
79
|
ex |
⊢ ( ( 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 0 , 𝑦 〉 ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 81 |
80
|
ancoms |
⊢ ( ( 𝐿 = 〈 0 , 𝑦 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 82 |
81
|
adantld |
⊢ ( ( 𝐿 = 〈 0 , 𝑦 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 83 |
74 82
|
biimtrdi |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) |
| 84 |
83
|
expdcom |
⊢ ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) ) |
| 85 |
66 72 84
|
3jaod |
⊢ ( 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( ( 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∨ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) ) |
| 86 |
33
|
eqeq2d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ↔ 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) ) |
| 87 |
86 48
|
anbi12d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ) ↔ ( 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ) ) ) |
| 88 |
46 87
|
syl |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ) ↔ ( 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ) ) ) |
| 89 |
1 2 3 4
|
pgnbgreunbgrlem2lem3 |
⊢ ( ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ∧ { 𝐿 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ) → ¬ { 〈 0 , 𝑏 〉 , 𝐾 } ∈ 𝐸 ) |
| 90 |
89 57
|
syl |
⊢ ( ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ∧ { 𝐿 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ) → ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 91 |
90
|
ex |
⊢ ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( { 𝐿 , 〈 0 , 𝑏 〉 } ∈ 𝐸 → ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 92 |
52 91
|
biimtrid |
⊢ ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 → ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 93 |
92
|
impcomd |
⊢ ( ( ( 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 94 |
93
|
ex |
⊢ ( ( 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ∧ 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 95 |
94
|
ancoms |
⊢ ( ( 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 96 |
95
|
adantld |
⊢ ( ( 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( 𝑦 + 2 ) mod 5 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 97 |
88 96
|
biimtrdi |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) |
| 98 |
97
|
expdcom |
⊢ ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 → ( 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) ) |
| 99 |
86 20
|
anbi12d |
⊢ ( ( 2nd ‘ 𝑋 ) = 𝑦 → ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) ↔ ( 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , 𝑦 〉 ) ) ) |
| 100 |
46 99
|
syl |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) ↔ ( 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , 𝑦 〉 ) ) ) |
| 101 |
1 2 3 4
|
pgnbgreunbgrlem2lem2 |
⊢ ( ( ( ( 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ∧ { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ) → ¬ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) |
| 102 |
101
|
pm2.21d |
⊢ ( ( ( ( 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ∧ { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ) → ( { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 103 |
102
|
expimpd |
⊢ ( ( ( 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , 𝑦 〉 ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) |
| 104 |
103
|
ex |
⊢ ( ( 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , 𝑦 〉 ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 105 |
104
|
adantld |
⊢ ( ( 𝐿 = 〈 1 , ( ( 𝑦 − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , 𝑦 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 106 |
100 105
|
biimtrdi |
⊢ ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) |
| 107 |
106
|
expdcom |
⊢ ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 → ( 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) ) |
| 108 |
|
eqtr3 |
⊢ ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) → 𝐿 = 𝐾 ) |
| 109 |
108
|
eqcomd |
⊢ ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) → 𝐾 = 𝐿 ) |
| 110 |
109 7
|
syl |
⊢ ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) |
| 111 |
110
|
a1d |
⊢ ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ∧ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) |
| 112 |
111
|
ex |
⊢ ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 → ( 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) ) |
| 113 |
98 107 112
|
3jaod |
⊢ ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 → ( ( 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∨ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) ) |
| 114 |
45 85 113
|
3jaoi |
⊢ ( ( 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∨ 𝐿 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝐿 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) → ( ( 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) + 2 ) mod 5 ) 〉 ∨ 𝐾 = 〈 0 , ( 2nd ‘ 𝑋 ) 〉 ∨ 𝐾 = 〈 1 , ( ( ( 2nd ‘ 𝑋 ) − 2 ) mod 5 ) 〉 ) → ( ( 𝑋 = 〈 1 , 𝑦 〉 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐾 ≠ 𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , 〈 0 , 𝑏 〉 } ∈ 𝐸 ∧ { 〈 0 , 𝑏 〉 , 𝐿 } ∈ 𝐸 ) → 𝑋 = 〈 0 , 𝑏 〉 ) ) ) ) ) |