Metamath Proof Explorer


Theorem pgnbgreunbgrlem2lem3

Description: Lemma 3 for pgnbgreunbgrlem2 . (Contributed by AV, 17-Nov-2025)

Ref Expression
Hypotheses pgnbgreunbgr.g 𝐺 = ( 5 gPetersenGr 2 )
pgnbgreunbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
pgnbgreunbgr.e 𝐸 = ( Edg ‘ 𝐺 )
pgnbgreunbgr.n 𝑁 = ( 𝐺 NeighbVtx 𝑋 )
Assertion pgnbgreunbgrlem2lem3 ( ( ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ∧ { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ) → ¬ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 pgnbgreunbgr.g 𝐺 = ( 5 gPetersenGr 2 )
2 pgnbgreunbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
3 pgnbgreunbgr.e 𝐸 = ( Edg ‘ 𝐺 )
4 pgnbgreunbgr.n 𝑁 = ( 𝐺 NeighbVtx 𝑋 )
5 prcom { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } = { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ }
6 5 eleq1i ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 )
7 6 a1i ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
8 5eluz3 5 ∈ ( ℤ ‘ 3 )
9 pglem 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) )
10 8 9 pm3.2i ( 5 ∈ ( ℤ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) )
11 c0ex 0 ∈ V
12 vex 𝑏 ∈ V
13 11 12 op1st ( 1st ‘ ⟨ 0 , 𝑏 ⟩ ) = 0
14 eqid ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) )
15 14 1 2 3 gpgvtxedg0 ( ( ( 5 ∈ ( ℤ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) ∧ ( 1st ‘ ⟨ 0 , 𝑏 ⟩ ) = 0 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) )
16 10 13 15 mp3an12 ( { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ } ∈ 𝐸 → ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) )
17 7 16 biimtrdi ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 → ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) ) )
18 14 1 2 3 gpgvtxedg0 ( ( ( 5 ∈ ( ℤ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) ∧ ( 1st ‘ ⟨ 0 , 𝑏 ⟩ ) = 0 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ( ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) )
19 10 13 18 mp3an12 ( { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 → ( ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) )
20 1ex 1 ∈ V
21 ovex ( ( 𝑦 + 2 ) mod 5 ) ∈ V
22 20 21 opth ( ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ↔ ( 1 = 0 ∧ ( ( 𝑦 + 2 ) mod 5 ) = ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ) )
23 ax-1ne0 1 ≠ 0
24 eqneqall ( 1 = 0 → ( 1 ≠ 0 → ( ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ∧ ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
25 23 24 mpi ( 1 = 0 → ( ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ∧ ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
26 25 adantr ( ( 1 = 0 ∧ ( ( 𝑦 + 2 ) mod 5 ) = ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ) → ( ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ∧ ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
27 22 26 sylbi ( ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ → ( ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ∧ ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
28 20 21 opth ( ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ↔ ( 1 = 1 ∧ ( ( 𝑦 + 2 ) mod 5 ) = ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ) )
29 11 12 op2nd ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) = 𝑏
30 29 eqeq2i ( ( ( 𝑦 + 2 ) mod 5 ) = ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ↔ ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 )
31 ovex ( ( 𝑦 − 2 ) mod 5 ) ∈ V
32 20 31 opth ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ↔ ( 1 = 0 ∧ ( ( 𝑦 − 2 ) mod 5 ) = ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ) )
33 eqneqall ( 1 = 0 → ( 1 ≠ 0 → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) ) )
34 23 33 mpi ( 1 = 0 → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
35 34 adantr ( ( 1 = 0 ∧ ( ( 𝑦 − 2 ) mod 5 ) = ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
36 32 35 sylbi ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
37 20 31 opth ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ↔ ( 1 = 1 ∧ ( ( 𝑦 − 2 ) mod 5 ) = ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ) )
38 29 eqeq2i ( ( ( 𝑦 − 2 ) mod 5 ) = ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ↔ ( ( 𝑦 − 2 ) mod 5 ) = 𝑏 )
39 eqeq2 ( 𝑏 = ( ( 𝑦 − 2 ) mod 5 ) → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 ↔ ( ( 𝑦 + 2 ) mod 5 ) = ( ( 𝑦 − 2 ) mod 5 ) ) )
40 39 eqcoms ( ( ( 𝑦 − 2 ) mod 5 ) = 𝑏 → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 ↔ ( ( 𝑦 + 2 ) mod 5 ) = ( ( 𝑦 − 2 ) mod 5 ) ) )
41 40 adantl ( ( 𝑦 ∈ ( 0 ..^ 5 ) ∧ ( ( 𝑦 − 2 ) mod 5 ) = 𝑏 ) → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 ↔ ( ( 𝑦 + 2 ) mod 5 ) = ( ( 𝑦 − 2 ) mod 5 ) ) )
42 elfzoelz ( 𝑦 ∈ ( 0 ..^ 5 ) → 𝑦 ∈ ℤ )
43 2z 2 ∈ ℤ
44 43 a1i ( 𝑦 ∈ ( 0 ..^ 5 ) → 2 ∈ ℤ )
45 42 44 zaddcld ( 𝑦 ∈ ( 0 ..^ 5 ) → ( 𝑦 + 2 ) ∈ ℤ )
46 42 44 zsubcld ( 𝑦 ∈ ( 0 ..^ 5 ) → ( 𝑦 − 2 ) ∈ ℤ )
47 5nn 5 ∈ ℕ
48 47 a1i ( 𝑦 ∈ ( 0 ..^ 5 ) → 5 ∈ ℕ )
49 difmod0 ( ( ( 𝑦 + 2 ) ∈ ℤ ∧ ( 𝑦 − 2 ) ∈ ℤ ∧ 5 ∈ ℕ ) → ( ( ( ( 𝑦 + 2 ) − ( 𝑦 − 2 ) ) mod 5 ) = 0 ↔ ( ( 𝑦 + 2 ) mod 5 ) = ( ( 𝑦 − 2 ) mod 5 ) ) )
50 49 bicomd ( ( ( 𝑦 + 2 ) ∈ ℤ ∧ ( 𝑦 − 2 ) ∈ ℤ ∧ 5 ∈ ℕ ) → ( ( ( 𝑦 + 2 ) mod 5 ) = ( ( 𝑦 − 2 ) mod 5 ) ↔ ( ( ( 𝑦 + 2 ) − ( 𝑦 − 2 ) ) mod 5 ) = 0 ) )
51 45 46 48 50 syl3anc ( 𝑦 ∈ ( 0 ..^ 5 ) → ( ( ( 𝑦 + 2 ) mod 5 ) = ( ( 𝑦 − 2 ) mod 5 ) ↔ ( ( ( 𝑦 + 2 ) − ( 𝑦 − 2 ) ) mod 5 ) = 0 ) )
52 42 zcnd ( 𝑦 ∈ ( 0 ..^ 5 ) → 𝑦 ∈ ℂ )
53 2cnd ( 𝑦 ∈ ( 0 ..^ 5 ) → 2 ∈ ℂ )
54 52 53 53 pnncand ( 𝑦 ∈ ( 0 ..^ 5 ) → ( ( 𝑦 + 2 ) − ( 𝑦 − 2 ) ) = ( 2 + 2 ) )
55 2p2e4 ( 2 + 2 ) = 4
56 54 55 eqtrdi ( 𝑦 ∈ ( 0 ..^ 5 ) → ( ( 𝑦 + 2 ) − ( 𝑦 − 2 ) ) = 4 )
57 56 oveq1d ( 𝑦 ∈ ( 0 ..^ 5 ) → ( ( ( 𝑦 + 2 ) − ( 𝑦 − 2 ) ) mod 5 ) = ( 4 mod 5 ) )
58 57 eqeq1d ( 𝑦 ∈ ( 0 ..^ 5 ) → ( ( ( ( 𝑦 + 2 ) − ( 𝑦 − 2 ) ) mod 5 ) = 0 ↔ ( 4 mod 5 ) = 0 ) )
59 4re 4 ∈ ℝ
60 5rp 5 ∈ ℝ+
61 0re 0 ∈ ℝ
62 4pos 0 < 4
63 61 59 62 ltleii 0 ≤ 4
64 4lt5 4 < 5
65 modid ( ( ( 4 ∈ ℝ ∧ 5 ∈ ℝ+ ) ∧ ( 0 ≤ 4 ∧ 4 < 5 ) ) → ( 4 mod 5 ) = 4 )
66 59 60 63 64 65 mp4an ( 4 mod 5 ) = 4
67 66 eqeq1i ( ( 4 mod 5 ) = 0 ↔ 4 = 0 )
68 4ne0 4 ≠ 0
69 68 a1i ( { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 → 4 ≠ 0 )
70 69 necon2bi ( 4 = 0 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 )
71 67 70 sylbi ( ( 4 mod 5 ) = 0 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 )
72 58 71 biimtrdi ( 𝑦 ∈ ( 0 ..^ 5 ) → ( ( ( ( 𝑦 + 2 ) − ( 𝑦 − 2 ) ) mod 5 ) = 0 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
73 51 72 sylbid ( 𝑦 ∈ ( 0 ..^ 5 ) → ( ( ( 𝑦 + 2 ) mod 5 ) = ( ( 𝑦 − 2 ) mod 5 ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
74 73 adantr ( ( 𝑦 ∈ ( 0 ..^ 5 ) ∧ ( ( 𝑦 − 2 ) mod 5 ) = 𝑏 ) → ( ( ( 𝑦 + 2 ) mod 5 ) = ( ( 𝑦 − 2 ) mod 5 ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
75 41 74 sylbid ( ( 𝑦 ∈ ( 0 ..^ 5 ) ∧ ( ( 𝑦 − 2 ) mod 5 ) = 𝑏 ) → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
76 75 ex ( 𝑦 ∈ ( 0 ..^ 5 ) → ( ( ( 𝑦 − 2 ) mod 5 ) = 𝑏 → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
77 76 adantl ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( ( 𝑦 − 2 ) mod 5 ) = 𝑏 → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
78 77 com12 ( ( ( 𝑦 − 2 ) mod 5 ) = 𝑏 → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
79 38 78 sylbi ( ( ( 𝑦 − 2 ) mod 5 ) = ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
80 37 79 simplbiim ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
81 20 31 opth ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ↔ ( 1 = 0 ∧ ( ( 𝑦 − 2 ) mod 5 ) = ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ) )
82 34 adantr ( ( 1 = 0 ∧ ( ( 𝑦 − 2 ) mod 5 ) = ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
83 81 82 sylbi ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
84 36 80 83 3jaoi ( ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
85 84 com13 ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
86 85 impd ( ( ( 𝑦 + 2 ) mod 5 ) = 𝑏 → ( ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ∧ ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
87 30 86 sylbi ( ( ( 𝑦 + 2 ) mod 5 ) = ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) → ( ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ∧ ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
88 28 87 simplbiim ( ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ → ( ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ∧ ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
89 20 21 opth ( ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ↔ ( 1 = 0 ∧ ( ( 𝑦 + 2 ) mod 5 ) = ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ) )
90 25 adantr ( ( 1 = 0 ∧ ( ( 𝑦 + 2 ) mod 5 ) = ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ) → ( ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ∧ ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
91 89 90 sylbi ( ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ → ( ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ∧ ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
92 27 88 91 3jaoi ( ( ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) → ( ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ∧ ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
93 19 92 syl ( { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 → ( ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ∧ ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
94 ax-1 ( ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 → ( ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ∧ ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
95 93 94 pm2.61i ( ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ∧ ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 )
96 95 ex ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) + 1 ) mod 5 ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 1 , ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) ⟩ ∨ ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ = ⟨ 0 , ( ( ( 2nd ‘ ⟨ 0 , 𝑏 ⟩ ) − 1 ) mod 5 ) ⟩ ) → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
97 17 96 syld ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
98 97 adantl ( ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
99 preq1 ( 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ → { 𝐾 , ⟨ 0 , 𝑏 ⟩ } = { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } )
100 99 eleq1d ( 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ → ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ) )
101 100 adantl ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ) )
102 preq2 ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → { ⟨ 0 , 𝑏 ⟩ , 𝐿 } = { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } )
103 102 eleq1d ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → ( { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ↔ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
104 103 notbid ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ → ( ¬ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ↔ ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
105 104 adantr ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( ¬ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ↔ ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
106 101 105 imbi12d ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 → ¬ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) ↔ ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
107 106 adantr ( ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 → ¬ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) ↔ ( { ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 → ¬ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
108 98 107 mpbird ( ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 → ¬ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) )
109 108 imp ( ( ( ( 𝐿 = ⟨ 1 , ( ( 𝑦 + 2 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , ( ( 𝑦 − 2 ) mod 5 ) ⟩ ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ∧ { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ) → ¬ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 )