| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgnbgreunbgr.g |
|- G = ( 5 gPetersenGr 2 ) |
| 2 |
|
pgnbgreunbgr.v |
|- V = ( Vtx ` G ) |
| 3 |
|
pgnbgreunbgr.e |
|- E = ( Edg ` G ) |
| 4 |
|
pgnbgreunbgr.n |
|- N = ( G NeighbVtx X ) |
| 5 |
|
prcom |
|- { <. 1 , ( ( y - 2 ) mod 5 ) >. , <. 0 , b >. } = { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } |
| 6 |
5
|
eleq1i |
|- ( { <. 1 , ( ( y - 2 ) mod 5 ) >. , <. 0 , b >. } e. E <-> { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) |
| 7 |
6
|
a1i |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( { <. 1 , ( ( y - 2 ) mod 5 ) >. , <. 0 , b >. } e. E <-> { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) ) |
| 8 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
| 9 |
|
pglem |
|- 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 10 |
8 9
|
pm3.2i |
|- ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) |
| 11 |
|
c0ex |
|- 0 e. _V |
| 12 |
|
vex |
|- b e. _V |
| 13 |
11 12
|
op1st |
|- ( 1st ` <. 0 , b >. ) = 0 |
| 14 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 15 |
14 1 2 3
|
gpgvtxedg0 |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ ( 1st ` <. 0 , b >. ) = 0 /\ { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E ) -> ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) |
| 16 |
10 13 15
|
mp3an12 |
|- ( { <. 0 , b >. , <. 1 , ( ( y - 2 ) mod 5 ) >. } e. E -> ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) |
| 17 |
7 16
|
biimtrdi |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( { <. 1 , ( ( y - 2 ) mod 5 ) >. , <. 0 , b >. } e. E -> ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) ) |
| 18 |
14 1 2 3
|
gpgvtxedg0 |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ ( 1st ` <. 0 , b >. ) = 0 /\ { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) -> ( <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) |
| 19 |
10 13 18
|
mp3an12 |
|- ( { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E -> ( <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) |
| 20 |
|
1ex |
|- 1 e. _V |
| 21 |
|
ovex |
|- ( ( y + 2 ) mod 5 ) e. _V |
| 22 |
20 21
|
opth |
|- ( <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. <-> ( 1 = 0 /\ ( ( y + 2 ) mod 5 ) = ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) ) ) |
| 23 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 24 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 25 |
23 24
|
mpi |
|- ( 1 = 0 -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 26 |
25
|
adantr |
|- ( ( 1 = 0 /\ ( ( y + 2 ) mod 5 ) = ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) ) -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 27 |
22 26
|
sylbi |
|- ( <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 28 |
20 21
|
opth |
|- ( <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. <-> ( 1 = 1 /\ ( ( y + 2 ) mod 5 ) = ( 2nd ` <. 0 , b >. ) ) ) |
| 29 |
11 12
|
op2nd |
|- ( 2nd ` <. 0 , b >. ) = b |
| 30 |
29
|
eqeq2i |
|- ( ( ( y + 2 ) mod 5 ) = ( 2nd ` <. 0 , b >. ) <-> ( ( y + 2 ) mod 5 ) = b ) |
| 31 |
|
ovex |
|- ( ( y - 2 ) mod 5 ) e. _V |
| 32 |
20 31
|
opth |
|- ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. <-> ( 1 = 0 /\ ( ( y - 2 ) mod 5 ) = ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) ) ) |
| 33 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( ( y + 2 ) mod 5 ) = b -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) ) |
| 34 |
23 33
|
mpi |
|- ( 1 = 0 -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( ( y + 2 ) mod 5 ) = b -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 35 |
34
|
adantr |
|- ( ( 1 = 0 /\ ( ( y - 2 ) mod 5 ) = ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( ( y + 2 ) mod 5 ) = b -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 36 |
32 35
|
sylbi |
|- ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( ( y + 2 ) mod 5 ) = b -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 37 |
20 31
|
opth |
|- ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. <-> ( 1 = 1 /\ ( ( y - 2 ) mod 5 ) = ( 2nd ` <. 0 , b >. ) ) ) |
| 38 |
29
|
eqeq2i |
|- ( ( ( y - 2 ) mod 5 ) = ( 2nd ` <. 0 , b >. ) <-> ( ( y - 2 ) mod 5 ) = b ) |
| 39 |
|
eqeq2 |
|- ( b = ( ( y - 2 ) mod 5 ) -> ( ( ( y + 2 ) mod 5 ) = b <-> ( ( y + 2 ) mod 5 ) = ( ( y - 2 ) mod 5 ) ) ) |
| 40 |
39
|
eqcoms |
|- ( ( ( y - 2 ) mod 5 ) = b -> ( ( ( y + 2 ) mod 5 ) = b <-> ( ( y + 2 ) mod 5 ) = ( ( y - 2 ) mod 5 ) ) ) |
| 41 |
40
|
adantl |
|- ( ( y e. ( 0 ..^ 5 ) /\ ( ( y - 2 ) mod 5 ) = b ) -> ( ( ( y + 2 ) mod 5 ) = b <-> ( ( y + 2 ) mod 5 ) = ( ( y - 2 ) mod 5 ) ) ) |
| 42 |
|
elfzoelz |
|- ( y e. ( 0 ..^ 5 ) -> y e. ZZ ) |
| 43 |
|
2z |
|- 2 e. ZZ |
| 44 |
43
|
a1i |
|- ( y e. ( 0 ..^ 5 ) -> 2 e. ZZ ) |
| 45 |
42 44
|
zaddcld |
|- ( y e. ( 0 ..^ 5 ) -> ( y + 2 ) e. ZZ ) |
| 46 |
42 44
|
zsubcld |
|- ( y e. ( 0 ..^ 5 ) -> ( y - 2 ) e. ZZ ) |
| 47 |
|
5nn |
|- 5 e. NN |
| 48 |
47
|
a1i |
|- ( y e. ( 0 ..^ 5 ) -> 5 e. NN ) |
| 49 |
|
difmod0 |
|- ( ( ( y + 2 ) e. ZZ /\ ( y - 2 ) e. ZZ /\ 5 e. NN ) -> ( ( ( ( y + 2 ) - ( y - 2 ) ) mod 5 ) = 0 <-> ( ( y + 2 ) mod 5 ) = ( ( y - 2 ) mod 5 ) ) ) |
| 50 |
49
|
bicomd |
|- ( ( ( y + 2 ) e. ZZ /\ ( y - 2 ) e. ZZ /\ 5 e. NN ) -> ( ( ( y + 2 ) mod 5 ) = ( ( y - 2 ) mod 5 ) <-> ( ( ( y + 2 ) - ( y - 2 ) ) mod 5 ) = 0 ) ) |
| 51 |
45 46 48 50
|
syl3anc |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( y + 2 ) mod 5 ) = ( ( y - 2 ) mod 5 ) <-> ( ( ( y + 2 ) - ( y - 2 ) ) mod 5 ) = 0 ) ) |
| 52 |
42
|
zcnd |
|- ( y e. ( 0 ..^ 5 ) -> y e. CC ) |
| 53 |
|
2cnd |
|- ( y e. ( 0 ..^ 5 ) -> 2 e. CC ) |
| 54 |
52 53 53
|
pnncand |
|- ( y e. ( 0 ..^ 5 ) -> ( ( y + 2 ) - ( y - 2 ) ) = ( 2 + 2 ) ) |
| 55 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
| 56 |
54 55
|
eqtrdi |
|- ( y e. ( 0 ..^ 5 ) -> ( ( y + 2 ) - ( y - 2 ) ) = 4 ) |
| 57 |
56
|
oveq1d |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( y + 2 ) - ( y - 2 ) ) mod 5 ) = ( 4 mod 5 ) ) |
| 58 |
57
|
eqeq1d |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( ( y + 2 ) - ( y - 2 ) ) mod 5 ) = 0 <-> ( 4 mod 5 ) = 0 ) ) |
| 59 |
|
4re |
|- 4 e. RR |
| 60 |
|
5rp |
|- 5 e. RR+ |
| 61 |
|
0re |
|- 0 e. RR |
| 62 |
|
4pos |
|- 0 < 4 |
| 63 |
61 59 62
|
ltleii |
|- 0 <_ 4 |
| 64 |
|
4lt5 |
|- 4 < 5 |
| 65 |
|
modid |
|- ( ( ( 4 e. RR /\ 5 e. RR+ ) /\ ( 0 <_ 4 /\ 4 < 5 ) ) -> ( 4 mod 5 ) = 4 ) |
| 66 |
59 60 63 64 65
|
mp4an |
|- ( 4 mod 5 ) = 4 |
| 67 |
66
|
eqeq1i |
|- ( ( 4 mod 5 ) = 0 <-> 4 = 0 ) |
| 68 |
|
4ne0 |
|- 4 =/= 0 |
| 69 |
68
|
a1i |
|- ( { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E -> 4 =/= 0 ) |
| 70 |
69
|
necon2bi |
|- ( 4 = 0 -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) |
| 71 |
67 70
|
sylbi |
|- ( ( 4 mod 5 ) = 0 -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) |
| 72 |
58 71
|
biimtrdi |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( ( y + 2 ) - ( y - 2 ) ) mod 5 ) = 0 -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 73 |
51 72
|
sylbid |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( y + 2 ) mod 5 ) = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 74 |
73
|
adantr |
|- ( ( y e. ( 0 ..^ 5 ) /\ ( ( y - 2 ) mod 5 ) = b ) -> ( ( ( y + 2 ) mod 5 ) = ( ( y - 2 ) mod 5 ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 75 |
41 74
|
sylbid |
|- ( ( y e. ( 0 ..^ 5 ) /\ ( ( y - 2 ) mod 5 ) = b ) -> ( ( ( y + 2 ) mod 5 ) = b -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 76 |
75
|
ex |
|- ( y e. ( 0 ..^ 5 ) -> ( ( ( y - 2 ) mod 5 ) = b -> ( ( ( y + 2 ) mod 5 ) = b -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 77 |
76
|
adantl |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( ( y - 2 ) mod 5 ) = b -> ( ( ( y + 2 ) mod 5 ) = b -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 78 |
77
|
com12 |
|- ( ( ( y - 2 ) mod 5 ) = b -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( ( y + 2 ) mod 5 ) = b -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 79 |
38 78
|
sylbi |
|- ( ( ( y - 2 ) mod 5 ) = ( 2nd ` <. 0 , b >. ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( ( y + 2 ) mod 5 ) = b -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 80 |
37 79
|
simplbiim |
|- ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( ( y + 2 ) mod 5 ) = b -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 81 |
20 31
|
opth |
|- ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. <-> ( 1 = 0 /\ ( ( y - 2 ) mod 5 ) = ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) ) ) |
| 82 |
34
|
adantr |
|- ( ( 1 = 0 /\ ( ( y - 2 ) mod 5 ) = ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( ( y + 2 ) mod 5 ) = b -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 83 |
81 82
|
sylbi |
|- ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( ( y + 2 ) mod 5 ) = b -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 84 |
36 80 83
|
3jaoi |
|- ( ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( ( y + 2 ) mod 5 ) = b -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 85 |
84
|
com13 |
|- ( ( ( y + 2 ) mod 5 ) = b -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 86 |
85
|
impd |
|- ( ( ( y + 2 ) mod 5 ) = b -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 87 |
30 86
|
sylbi |
|- ( ( ( y + 2 ) mod 5 ) = ( 2nd ` <. 0 , b >. ) -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 88 |
28 87
|
simplbiim |
|- ( <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 89 |
20 21
|
opth |
|- ( <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. <-> ( 1 = 0 /\ ( ( y + 2 ) mod 5 ) = ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) ) ) |
| 90 |
25
|
adantr |
|- ( ( 1 = 0 /\ ( ( y + 2 ) mod 5 ) = ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) ) -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 91 |
89 90
|
sylbi |
|- ( <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 92 |
27 88 91
|
3jaoi |
|- ( ( <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y + 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 93 |
19 92
|
syl |
|- ( { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 94 |
|
ax-1 |
|- ( -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E -> ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 95 |
93 94
|
pm2.61i |
|- ( ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) /\ ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) |
| 96 |
95
|
ex |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) + 1 ) mod 5 ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 1 , ( 2nd ` <. 0 , b >. ) >. \/ <. 1 , ( ( y - 2 ) mod 5 ) >. = <. 0 , ( ( ( 2nd ` <. 0 , b >. ) - 1 ) mod 5 ) >. ) -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 97 |
17 96
|
syld |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( { <. 1 , ( ( y - 2 ) mod 5 ) >. , <. 0 , b >. } e. E -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 98 |
97
|
adantl |
|- ( ( ( L = <. 1 , ( ( y + 2 ) mod 5 ) >. /\ K = <. 1 , ( ( y - 2 ) mod 5 ) >. ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( { <. 1 , ( ( y - 2 ) mod 5 ) >. , <. 0 , b >. } e. E -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 99 |
|
preq1 |
|- ( K = <. 1 , ( ( y - 2 ) mod 5 ) >. -> { K , <. 0 , b >. } = { <. 1 , ( ( y - 2 ) mod 5 ) >. , <. 0 , b >. } ) |
| 100 |
99
|
eleq1d |
|- ( K = <. 1 , ( ( y - 2 ) mod 5 ) >. -> ( { K , <. 0 , b >. } e. E <-> { <. 1 , ( ( y - 2 ) mod 5 ) >. , <. 0 , b >. } e. E ) ) |
| 101 |
100
|
adantl |
|- ( ( L = <. 1 , ( ( y + 2 ) mod 5 ) >. /\ K = <. 1 , ( ( y - 2 ) mod 5 ) >. ) -> ( { K , <. 0 , b >. } e. E <-> { <. 1 , ( ( y - 2 ) mod 5 ) >. , <. 0 , b >. } e. E ) ) |
| 102 |
|
preq2 |
|- ( L = <. 1 , ( ( y + 2 ) mod 5 ) >. -> { <. 0 , b >. , L } = { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } ) |
| 103 |
102
|
eleq1d |
|- ( L = <. 1 , ( ( y + 2 ) mod 5 ) >. -> ( { <. 0 , b >. , L } e. E <-> { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 104 |
103
|
notbid |
|- ( L = <. 1 , ( ( y + 2 ) mod 5 ) >. -> ( -. { <. 0 , b >. , L } e. E <-> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 105 |
104
|
adantr |
|- ( ( L = <. 1 , ( ( y + 2 ) mod 5 ) >. /\ K = <. 1 , ( ( y - 2 ) mod 5 ) >. ) -> ( -. { <. 0 , b >. , L } e. E <-> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) |
| 106 |
101 105
|
imbi12d |
|- ( ( L = <. 1 , ( ( y + 2 ) mod 5 ) >. /\ K = <. 1 , ( ( y - 2 ) mod 5 ) >. ) -> ( ( { K , <. 0 , b >. } e. E -> -. { <. 0 , b >. , L } e. E ) <-> ( { <. 1 , ( ( y - 2 ) mod 5 ) >. , <. 0 , b >. } e. E -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 107 |
106
|
adantr |
|- ( ( ( L = <. 1 , ( ( y + 2 ) mod 5 ) >. /\ K = <. 1 , ( ( y - 2 ) mod 5 ) >. ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E -> -. { <. 0 , b >. , L } e. E ) <-> ( { <. 1 , ( ( y - 2 ) mod 5 ) >. , <. 0 , b >. } e. E -> -. { <. 0 , b >. , <. 1 , ( ( y + 2 ) mod 5 ) >. } e. E ) ) ) |
| 108 |
98 107
|
mpbird |
|- ( ( ( L = <. 1 , ( ( y + 2 ) mod 5 ) >. /\ K = <. 1 , ( ( y - 2 ) mod 5 ) >. ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( { K , <. 0 , b >. } e. E -> -. { <. 0 , b >. , L } e. E ) ) |
| 109 |
108
|
imp |
|- ( ( ( ( L = <. 1 , ( ( y + 2 ) mod 5 ) >. /\ K = <. 1 , ( ( y - 2 ) mod 5 ) >. ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) /\ { K , <. 0 , b >. } e. E ) -> -. { <. 0 , b >. , L } e. E ) |