| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntrval.r | ⊢ 𝑅  =  ( 𝑎  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑎 )  −  𝑎 ) ) | 
						
							| 2 |  | ssidd | ⊢ ( ⊤  →  ℝ  ⊆  ℝ ) | 
						
							| 3 |  | 1red | ⊢ ( ⊤  →  1  ∈  ℝ ) | 
						
							| 4 |  | fzfid | ⊢ ( ( ⊤  ∧  𝑚  ∈  ℝ )  →  ( 1 ... ( ⌊ ‘ 𝑚 ) )  ∈  Fin ) | 
						
							| 5 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 7 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 8 | 1 | pntrf | ⊢ 𝑅 : ℝ+ ⟶ ℝ | 
						
							| 9 | 8 | ffvelcdmi | ⊢ ( 𝑛  ∈  ℝ+  →  ( 𝑅 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 10 | 7 9 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑅 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 11 |  | peano2nn | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 12 |  | nnmulcl | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝑛  +  1 )  ∈  ℕ )  →  ( 𝑛  ·  ( 𝑛  +  1 ) )  ∈  ℕ ) | 
						
							| 13 | 11 12 | mpdan | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  ·  ( 𝑛  +  1 ) )  ∈  ℕ ) | 
						
							| 14 | 10 13 | nndivred | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℝ ) | 
						
							| 15 | 14 | recnd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℂ ) | 
						
							| 16 | 6 15 | syl | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) )  →  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℂ ) | 
						
							| 17 | 4 16 | fsumcl | ⊢ ( ( ⊤  ∧  𝑚  ∈  ℝ )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℂ ) | 
						
							| 18 | 1 | pntrsumo1 | ⊢ ( 𝑚  ∈  ℝ  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ∈  𝑂(1) | 
						
							| 19 | 18 | a1i | ⊢ ( ⊤  →  ( 𝑚  ∈  ℝ  ↦  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 20 |  | fzfid | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 21 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 23 | 22 15 | syl | ⊢ ( ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℂ ) | 
						
							| 24 | 23 | abscld | ⊢ ( ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 25 | 20 24 | fsumrecl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 26 | 17 | adantr | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℂ ) | 
						
							| 27 | 26 | abscld | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 28 |  | fzfid | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  ( 1 ... ( ⌊ ‘ 𝑚 ) )  ∈  Fin ) | 
						
							| 29 | 16 | adantlr | ⊢ ( ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) )  →  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℂ ) | 
						
							| 30 | 29 | abscld | ⊢ ( ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 31 | 28 30 | fsumrecl | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 32 | 25 | ad2ant2r | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 33 | 28 29 | fsumabs | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 34 |  | fzfid | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 35 | 21 | adantl | ⊢ ( ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 36 | 35 15 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  ∈  ℂ ) | 
						
							| 37 | 36 | abscld | ⊢ ( ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ∈  ℝ ) | 
						
							| 38 | 36 | absge0d | ⊢ ( ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 39 |  | simplr | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  𝑚  ∈  ℝ ) | 
						
							| 40 |  | simprll | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 41 |  | simprr | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  𝑚  <  𝑥 ) | 
						
							| 42 | 39 40 41 | ltled | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  𝑚  ≤  𝑥 ) | 
						
							| 43 |  | flword2 | ⊢ ( ( 𝑚  ∈  ℝ  ∧  𝑥  ∈  ℝ  ∧  𝑚  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) | 
						
							| 44 | 39 40 42 43 | syl3anc | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) | 
						
							| 45 |  | fzss2 | ⊢ ( ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) )  →  ( 1 ... ( ⌊ ‘ 𝑚 ) )  ⊆  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  ( 1 ... ( ⌊ ‘ 𝑚 ) )  ⊆  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 47 | 34 37 38 46 | fsumless | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 48 | 27 31 32 33 47 | letrd | ⊢ ( ( ( ⊤  ∧  𝑚  ∈  ℝ )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑚  <  𝑥 ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 49 | 2 3 17 19 25 48 | o1bddrp | ⊢ ( ⊤  →  ∃ 𝑐  ∈  ℝ+ ∀ 𝑚  ∈  ℝ ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝑐 ) | 
						
							| 50 | 49 | mptru | ⊢ ∃ 𝑐  ∈  ℝ+ ∀ 𝑚  ∈  ℝ ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝑐 | 
						
							| 51 |  | zre | ⊢ ( 𝑚  ∈  ℤ  →  𝑚  ∈  ℝ ) | 
						
							| 52 | 51 | imim1i | ⊢ ( ( 𝑚  ∈  ℝ  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝑐 )  →  ( 𝑚  ∈  ℤ  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝑐 ) ) | 
						
							| 53 |  | flid | ⊢ ( 𝑚  ∈  ℤ  →  ( ⌊ ‘ 𝑚 )  =  𝑚 ) | 
						
							| 54 | 53 | oveq2d | ⊢ ( 𝑚  ∈  ℤ  →  ( 1 ... ( ⌊ ‘ 𝑚 ) )  =  ( 1 ... 𝑚 ) ) | 
						
							| 55 | 54 | sumeq1d | ⊢ ( 𝑚  ∈  ℤ  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) )  =  Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 56 | 55 | fveq2d | ⊢ ( 𝑚  ∈  ℤ  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  =  ( abs ‘ Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 57 | 56 | breq1d | ⊢ ( 𝑚  ∈  ℤ  →  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝑐  ↔  ( abs ‘ Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝑐 ) ) | 
						
							| 58 | 52 57 | mpbidi | ⊢ ( ( 𝑚  ∈  ℝ  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝑐 )  →  ( 𝑚  ∈  ℤ  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝑐 ) ) | 
						
							| 59 | 58 | ralimi2 | ⊢ ( ∀ 𝑚  ∈  ℝ ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝑐  →  ∀ 𝑚  ∈  ℤ ( abs ‘ Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝑐 ) | 
						
							| 60 | 59 | reximi | ⊢ ( ∃ 𝑐  ∈  ℝ+ ∀ 𝑚  ∈  ℝ ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝑐  →  ∃ 𝑐  ∈  ℝ+ ∀ 𝑚  ∈  ℤ ( abs ‘ Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝑐 ) | 
						
							| 61 | 50 60 | ax-mp | ⊢ ∃ 𝑐  ∈  ℝ+ ∀ 𝑚  ∈  ℤ ( abs ‘ Σ 𝑛  ∈  ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 )  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  ≤  𝑐 |