| Step | Hyp | Ref | Expression | 
						
							| 1 |  | precsexlem.1 | ⊢ 𝐹  =  rec ( ( 𝑝  ∈  V  ↦  ⦋ ( 1st  ‘ 𝑝 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑝 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) ,  〈 {  0s  } ,  ∅ 〉 ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑝  =  𝑞  →  ( 1st  ‘ 𝑝 )  =  ( 1st  ‘ 𝑞 ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑝  =  𝑞  →  ( 2nd  ‘ 𝑝 )  =  ( 2nd  ‘ 𝑞 ) ) | 
						
							| 4 | 3 | csbeq1d | ⊢ ( 𝑝  =  𝑞  →  ⦋ ( 2nd  ‘ 𝑝 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  ⦋ ( 2nd  ‘ 𝑞 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) | 
						
							| 5 | 2 4 | csbeq12dv | ⊢ ( 𝑝  =  𝑞  →  ⦋ ( 1st  ‘ 𝑝 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑝 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  ⦋ ( 1st  ‘ 𝑞 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑞 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) | 
						
							| 6 |  | rexeq | ⊢ ( 𝑟  =  𝑠  →  ( ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 )  ↔  ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) ) ) | 
						
							| 7 | 6 | rexbidv | ⊢ ( 𝑟  =  𝑠  →  ( ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 )  ↔  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) ) ) | 
						
							| 8 | 7 | abbidv | ⊢ ( 𝑟  =  𝑠  →  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) }  =  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) | 
						
							| 9 | 8 | uneq2d | ⊢ ( 𝑟  =  𝑠  →  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } )  =  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) | 
						
							| 10 | 9 | uneq2d | ⊢ ( 𝑟  =  𝑠  →  ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) )  =  ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ) | 
						
							| 11 |  | id | ⊢ ( 𝑟  =  𝑠  →  𝑟  =  𝑠 ) | 
						
							| 12 |  | rexeq | ⊢ ( 𝑟  =  𝑠  →  ( ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 )  ↔  ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) ) ) | 
						
							| 13 | 12 | rexbidv | ⊢ ( 𝑟  =  𝑠  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) ) ) | 
						
							| 14 | 13 | abbidv | ⊢ ( 𝑟  =  𝑠  →  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) }  =  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) | 
						
							| 15 | 14 | uneq2d | ⊢ ( 𝑟  =  𝑠  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } )  =  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) | 
						
							| 16 | 11 15 | uneq12d | ⊢ ( 𝑟  =  𝑠  →  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) )  =  ( 𝑠  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) ) | 
						
							| 17 | 10 16 | opeq12d | ⊢ ( 𝑟  =  𝑠  →  〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) | 
						
							| 18 |  | eqeq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 )  ↔  𝑏  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) ) ) | 
						
							| 19 | 18 | 2rexbidv | ⊢ ( 𝑎  =  𝑏  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) ) ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑥𝑅  =  𝑧𝑅  →  ( 𝑥𝑅  -s  𝐴 )  =  ( 𝑧𝑅  -s  𝐴 ) ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( 𝑥𝑅  =  𝑧𝑅  →  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 )  =  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( 𝑥𝑅  =  𝑧𝑅  →  (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  =  (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) ) ) | 
						
							| 23 |  | id | ⊢ ( 𝑥𝑅  =  𝑧𝑅  →  𝑥𝑅  =  𝑧𝑅 ) | 
						
							| 24 | 22 23 | oveq12d | ⊢ ( 𝑥𝑅  =  𝑧𝑅  →  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 )  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑧𝑅 ) ) | 
						
							| 25 | 24 | eqeq2d | ⊢ ( 𝑥𝑅  =  𝑧𝑅  →  ( 𝑏  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 )  ↔  𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑧𝑅 ) ) ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑦𝐿  =  𝑤  →  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝐿 )  =  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝑦𝐿  =  𝑤  →  (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  =  (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) ) ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( 𝑦𝐿  =  𝑤  →  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑧𝑅 )  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) ) | 
						
							| 29 | 28 | eqeq2d | ⊢ ( 𝑦𝐿  =  𝑤  →  ( 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑧𝑅 )  ↔  𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) ) ) | 
						
							| 30 | 25 29 | cbvrex2vw | ⊢ ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 )  ↔  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) ) | 
						
							| 31 | 19 30 | bitrdi | ⊢ ( 𝑎  =  𝑏  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 )  ↔  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) ) ) | 
						
							| 32 | 31 | cbvabv | ⊢ { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  =  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) } | 
						
							| 33 |  | eqeq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 )  ↔  𝑏  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) ) ) | 
						
							| 34 | 33 | 2rexbidv | ⊢ ( 𝑎  =  𝑏  →  ( ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 )  ↔  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) ) ) | 
						
							| 35 |  | oveq1 | ⊢ ( 𝑥𝐿  =  𝑧𝐿  →  ( 𝑥𝐿  -s  𝐴 )  =  ( 𝑧𝐿  -s  𝐴 ) ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( 𝑥𝐿  =  𝑧𝐿  →  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 )  =  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( 𝑥𝐿  =  𝑧𝐿  →  (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  =  (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) ) ) | 
						
							| 38 |  | id | ⊢ ( 𝑥𝐿  =  𝑧𝐿  →  𝑥𝐿  =  𝑧𝐿 ) | 
						
							| 39 | 37 38 | oveq12d | ⊢ ( 𝑥𝐿  =  𝑧𝐿  →  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 )  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑧𝐿 ) ) | 
						
							| 40 | 39 | eqeq2d | ⊢ ( 𝑥𝐿  =  𝑧𝐿  →  ( 𝑏  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 )  ↔  𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑧𝐿 ) ) ) | 
						
							| 41 |  | oveq2 | ⊢ ( 𝑦𝑅  =  𝑡  →  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝑅 )  =  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) ) | 
						
							| 42 | 41 | oveq2d | ⊢ ( 𝑦𝑅  =  𝑡  →  (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  =  (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) ) ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( 𝑦𝑅  =  𝑡  →  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑧𝐿 )  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) ) | 
						
							| 44 | 43 | eqeq2d | ⊢ ( 𝑦𝑅  =  𝑡  →  ( 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑧𝐿 )  ↔  𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) ) ) | 
						
							| 45 | 40 44 | cbvrex2vw | ⊢ ( ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 )  ↔  ∃ 𝑧𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) ) | 
						
							| 46 |  | breq2 | ⊢ ( 𝑥  =  𝑧  →  (  0s   <s  𝑥  ↔   0s   <s  𝑧 ) ) | 
						
							| 47 | 46 | cbvrabv | ⊢ { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 }  =  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } | 
						
							| 48 | 47 | rexeqi | ⊢ ( ∃ 𝑧𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 )  ↔  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) ) | 
						
							| 49 | 45 48 | bitri | ⊢ ( ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 )  ↔  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) ) | 
						
							| 50 | 34 49 | bitrdi | ⊢ ( 𝑎  =  𝑏  →  ( ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 )  ↔  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) ) ) | 
						
							| 51 | 50 | cbvabv | ⊢ { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) }  =  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } | 
						
							| 52 | 32 51 | uneq12i | ⊢ ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } )  =  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) | 
						
							| 53 | 52 | uneq2i | ⊢ ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) )  =  ( 𝑙  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) | 
						
							| 54 |  | eqeq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 )  ↔  𝑏  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) ) ) | 
						
							| 55 | 54 | 2rexbidv | ⊢ ( 𝑎  =  𝑏  →  ( ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 )  ↔  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) ) ) | 
						
							| 56 | 35 | oveq1d | ⊢ ( 𝑥𝐿  =  𝑧𝐿  →  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 )  =  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( 𝑥𝐿  =  𝑧𝐿  →  (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  =  (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) ) ) | 
						
							| 58 | 57 38 | oveq12d | ⊢ ( 𝑥𝐿  =  𝑧𝐿  →  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 )  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑧𝐿 ) ) | 
						
							| 59 | 58 | eqeq2d | ⊢ ( 𝑥𝐿  =  𝑧𝐿  →  ( 𝑏  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 )  ↔  𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑧𝐿 ) ) ) | 
						
							| 60 |  | oveq2 | ⊢ ( 𝑦𝐿  =  𝑤  →  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝐿 )  =  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( 𝑦𝐿  =  𝑤  →  (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  =  (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) ) ) | 
						
							| 62 | 61 | oveq1d | ⊢ ( 𝑦𝐿  =  𝑤  →  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑧𝐿 )  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) ) | 
						
							| 63 | 62 | eqeq2d | ⊢ ( 𝑦𝐿  =  𝑤  →  ( 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑧𝐿 )  ↔  𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) ) ) | 
						
							| 64 | 59 63 | cbvrex2vw | ⊢ ( ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 )  ↔  ∃ 𝑧𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) ) | 
						
							| 65 | 47 | rexeqi | ⊢ ( ∃ 𝑧𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 )  ↔  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) ) | 
						
							| 66 | 64 65 | bitri | ⊢ ( ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 )  ↔  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) ) | 
						
							| 67 | 55 66 | bitrdi | ⊢ ( 𝑎  =  𝑏  →  ( ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 )  ↔  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) ) ) | 
						
							| 68 | 67 | cbvabv | ⊢ { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  =  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) } | 
						
							| 69 |  | eqeq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 )  ↔  𝑏  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) ) ) | 
						
							| 70 | 69 | 2rexbidv | ⊢ ( 𝑎  =  𝑏  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) ) ) | 
						
							| 71 | 20 | oveq1d | ⊢ ( 𝑥𝑅  =  𝑧𝑅  →  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 )  =  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) ) | 
						
							| 72 | 71 | oveq2d | ⊢ ( 𝑥𝑅  =  𝑧𝑅  →  (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  =  (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) ) ) | 
						
							| 73 | 72 23 | oveq12d | ⊢ ( 𝑥𝑅  =  𝑧𝑅  →  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 )  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑧𝑅 ) ) | 
						
							| 74 | 73 | eqeq2d | ⊢ ( 𝑥𝑅  =  𝑧𝑅  →  ( 𝑏  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 )  ↔  𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑧𝑅 ) ) ) | 
						
							| 75 |  | oveq2 | ⊢ ( 𝑦𝑅  =  𝑡  →  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝑅 )  =  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) ) | 
						
							| 76 | 75 | oveq2d | ⊢ ( 𝑦𝑅  =  𝑡  →  (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  =  (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) ) ) | 
						
							| 77 | 76 | oveq1d | ⊢ ( 𝑦𝑅  =  𝑡  →  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑧𝑅 )  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) ) | 
						
							| 78 | 77 | eqeq2d | ⊢ ( 𝑦𝑅  =  𝑡  →  ( 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑧𝑅 )  ↔  𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) ) ) | 
						
							| 79 | 74 78 | cbvrex2vw | ⊢ ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 )  ↔  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) ) | 
						
							| 80 | 70 79 | bitrdi | ⊢ ( 𝑎  =  𝑏  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 )  ↔  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) ) ) | 
						
							| 81 | 80 | cbvabv | ⊢ { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) }  =  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } | 
						
							| 82 | 68 81 | uneq12i | ⊢ ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } )  =  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) | 
						
							| 83 | 82 | uneq2i | ⊢ ( 𝑠  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) )  =  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) | 
						
							| 84 | 53 83 | opeq12i | ⊢ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑠 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  〈 ( 𝑙  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉 | 
						
							| 85 | 17 84 | eqtrdi | ⊢ ( 𝑟  =  𝑠  →  〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  〈 ( 𝑙  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉 ) | 
						
							| 86 | 85 | cbvcsbv | ⊢ ⦋ ( 2nd  ‘ 𝑞 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  ⦋ ( 2nd  ‘ 𝑞 )  /  𝑠 ⦌ 〈 ( 𝑙  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉 | 
						
							| 87 | 86 | csbeq2i | ⊢ ⦋ ( 1st  ‘ 𝑞 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑞 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  ⦋ ( 1st  ‘ 𝑞 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑞 )  /  𝑠 ⦌ 〈 ( 𝑙  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉 | 
						
							| 88 |  | id | ⊢ ( 𝑙  =  𝑚  →  𝑙  =  𝑚 ) | 
						
							| 89 |  | rexeq | ⊢ ( 𝑙  =  𝑚  →  ( ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 )  ↔  ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) ) ) | 
						
							| 90 | 89 | rexbidv | ⊢ ( 𝑙  =  𝑚  →  ( ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 )  ↔  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) ) ) | 
						
							| 91 | 90 | abbidv | ⊢ ( 𝑙  =  𝑚  →  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  =  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) } ) | 
						
							| 92 | 91 | uneq1d | ⊢ ( 𝑙  =  𝑚  →  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } )  =  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) | 
						
							| 93 | 88 92 | uneq12d | ⊢ ( 𝑙  =  𝑚  →  ( 𝑙  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) )  =  ( 𝑚  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ) | 
						
							| 94 |  | rexeq | ⊢ ( 𝑙  =  𝑚  →  ( ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 )  ↔  ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) ) ) | 
						
							| 95 | 94 | rexbidv | ⊢ ( 𝑙  =  𝑚  →  ( ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 )  ↔  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) ) ) | 
						
							| 96 | 95 | abbidv | ⊢ ( 𝑙  =  𝑚  →  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  =  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) } ) | 
						
							| 97 | 96 | uneq1d | ⊢ ( 𝑙  =  𝑚  →  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } )  =  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) | 
						
							| 98 | 97 | uneq2d | ⊢ ( 𝑙  =  𝑚  →  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) )  =  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) ) | 
						
							| 99 | 93 98 | opeq12d | ⊢ ( 𝑙  =  𝑚  →  〈 ( 𝑙  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉  =  〈 ( 𝑚  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉 ) | 
						
							| 100 | 99 | csbeq2dv | ⊢ ( 𝑙  =  𝑚  →  ⦋ ( 2nd  ‘ 𝑞 )  /  𝑠 ⦌ 〈 ( 𝑙  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉  =  ⦋ ( 2nd  ‘ 𝑞 )  /  𝑠 ⦌ 〈 ( 𝑚  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉 ) | 
						
							| 101 | 100 | cbvcsbv | ⊢ ⦋ ( 1st  ‘ 𝑞 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑞 )  /  𝑠 ⦌ 〈 ( 𝑙  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑙 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉  =  ⦋ ( 1st  ‘ 𝑞 )  /  𝑚 ⦌ ⦋ ( 2nd  ‘ 𝑞 )  /  𝑠 ⦌ 〈 ( 𝑚  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉 | 
						
							| 102 | 87 101 | eqtri | ⊢ ⦋ ( 1st  ‘ 𝑞 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑞 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  ⦋ ( 1st  ‘ 𝑞 )  /  𝑚 ⦌ ⦋ ( 2nd  ‘ 𝑞 )  /  𝑠 ⦌ 〈 ( 𝑚  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉 | 
						
							| 103 | 5 102 | eqtrdi | ⊢ ( 𝑝  =  𝑞  →  ⦋ ( 1st  ‘ 𝑝 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑝 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉  =  ⦋ ( 1st  ‘ 𝑞 )  /  𝑚 ⦌ ⦋ ( 2nd  ‘ 𝑞 )  /  𝑠 ⦌ 〈 ( 𝑚  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉 ) | 
						
							| 104 | 103 | cbvmptv | ⊢ ( 𝑝  ∈  V  ↦  ⦋ ( 1st  ‘ 𝑝 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑝 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 )  =  ( 𝑞  ∈  V  ↦  ⦋ ( 1st  ‘ 𝑞 )  /  𝑚 ⦌ ⦋ ( 2nd  ‘ 𝑞 )  /  𝑠 ⦌ 〈 ( 𝑚  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉 ) | 
						
							| 105 |  | rdgeq1 | ⊢ ( ( 𝑝  ∈  V  ↦  ⦋ ( 1st  ‘ 𝑝 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑝 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 )  =  ( 𝑞  ∈  V  ↦  ⦋ ( 1st  ‘ 𝑞 )  /  𝑚 ⦌ ⦋ ( 2nd  ‘ 𝑞 )  /  𝑠 ⦌ 〈 ( 𝑚  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉 )  →  rec ( ( 𝑝  ∈  V  ↦  ⦋ ( 1st  ‘ 𝑝 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑝 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) ,  〈 {  0s  } ,  ∅ 〉 )  =  rec ( ( 𝑞  ∈  V  ↦  ⦋ ( 1st  ‘ 𝑞 )  /  𝑚 ⦌ ⦋ ( 2nd  ‘ 𝑞 )  /  𝑠 ⦌ 〈 ( 𝑚  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉 ) ,  〈 {  0s  } ,  ∅ 〉 ) ) | 
						
							| 106 | 104 105 | ax-mp | ⊢ rec ( ( 𝑝  ∈  V  ↦  ⦋ ( 1st  ‘ 𝑝 )  /  𝑙 ⦌ ⦋ ( 2nd  ‘ 𝑝 )  /  𝑟 ⦌ 〈 ( 𝑙  ∪  ( { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝑅 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝐿 ) } ) ) ,  ( 𝑟  ∪  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  { 𝑥  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑥 } ∃ 𝑦𝐿  ∈  𝑙 𝑎  =  ( (  1s   +s  ( ( 𝑥𝐿  -s  𝐴 )  ·s  𝑦𝐿 ) )  /su  𝑥𝐿 ) }  ∪  { 𝑎  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦𝑅  ∈  𝑟 𝑎  =  ( (  1s   +s  ( ( 𝑥𝑅  -s  𝐴 )  ·s  𝑦𝑅 ) )  /su  𝑥𝑅 ) } ) ) 〉 ) ,  〈 {  0s  } ,  ∅ 〉 )  =  rec ( ( 𝑞  ∈  V  ↦  ⦋ ( 1st  ‘ 𝑞 )  /  𝑚 ⦌ ⦋ ( 2nd  ‘ 𝑞 )  /  𝑠 ⦌ 〈 ( 𝑚  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉 ) ,  〈 {  0s  } ,  ∅ 〉 ) | 
						
							| 107 | 1 106 | eqtri | ⊢ 𝐹  =  rec ( ( 𝑞  ∈  V  ↦  ⦋ ( 1st  ‘ 𝑞 )  /  𝑚 ⦌ ⦋ ( 2nd  ‘ 𝑞 )  /  𝑠 ⦌ 〈 ( 𝑚  ∪  ( { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝑅 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝐿 ) } ) ) ,  ( 𝑠  ∪  ( { 𝑏  ∣  ∃ 𝑧𝐿  ∈  { 𝑧  ∈  (  L  ‘ 𝐴 )  ∣   0s   <s  𝑧 } ∃ 𝑤  ∈  𝑚 𝑏  =  ( (  1s   +s  ( ( 𝑧𝐿  -s  𝐴 )  ·s  𝑤 ) )  /su  𝑧𝐿 ) }  ∪  { 𝑏  ∣  ∃ 𝑧𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑡  ∈  𝑠 𝑏  =  ( (  1s   +s  ( ( 𝑧𝑅  -s  𝐴 )  ·s  𝑡 ) )  /su  𝑧𝑅 ) } ) ) 〉 ) ,  〈 {  0s  } ,  ∅ 〉 ) |