Step |
Hyp |
Ref |
Expression |
1 |
|
readvcot.d |
⊢ 𝐷 = { 𝑦 ∈ ℝ ∣ ( sin ‘ 𝑦 ) ≠ 0 } |
2 |
|
sincn |
⊢ sin ∈ ( ℂ –cn→ ℂ ) |
3 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
4 |
3
|
cncfcn1 |
⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
5 |
2 4
|
eleqtri |
⊢ sin ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
6 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
7 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
8 |
7
|
cnrest |
⊢ ( ( sin ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ℝ ⊆ ℂ ) → ( sin ↾ ℝ ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( TopOpen ‘ ℂfld ) ) ) |
9 |
5 6 8
|
mp2an |
⊢ ( sin ↾ ℝ ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( TopOpen ‘ ℂfld ) ) |
10 |
|
cnn0opn |
⊢ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) |
11 |
|
cnima |
⊢ ( ( ( sin ↾ ℝ ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) ) → ( ◡ ( sin ↾ ℝ ) “ ( ℂ ∖ { 0 } ) ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
12 |
9 10 11
|
mp2an |
⊢ ( ◡ ( sin ↾ ℝ ) “ ( ℂ ∖ { 0 } ) ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
13 |
|
resincl |
⊢ ( 𝑦 ∈ ℝ → ( sin ‘ 𝑦 ) ∈ ℝ ) |
14 |
13
|
recnd |
⊢ ( 𝑦 ∈ ℝ → ( sin ‘ 𝑦 ) ∈ ℂ ) |
15 |
14
|
adantr |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( sin ‘ 𝑦 ) ≠ 0 ) → ( sin ‘ 𝑦 ) ∈ ℂ ) |
16 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( sin ‘ 𝑦 ) ≠ 0 ) → ( sin ‘ 𝑦 ) ≠ 0 ) |
17 |
15 16
|
eldifsnd |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( sin ‘ 𝑦 ) ≠ 0 ) → ( sin ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
18 |
|
eldifsni |
⊢ ( ( sin ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) → ( sin ‘ 𝑦 ) ≠ 0 ) |
19 |
18
|
adantl |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( sin ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) → ( sin ‘ 𝑦 ) ≠ 0 ) |
20 |
17 19
|
impbida |
⊢ ( 𝑦 ∈ ℝ → ( ( sin ‘ 𝑦 ) ≠ 0 ↔ ( sin ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) ) |
21 |
20
|
rabbiia |
⊢ { 𝑦 ∈ ℝ ∣ ( sin ‘ 𝑦 ) ≠ 0 } = { 𝑦 ∈ ℝ ∣ ( sin ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) } |
22 |
|
sinf |
⊢ sin : ℂ ⟶ ℂ |
23 |
22
|
a1i |
⊢ ( ⊤ → sin : ℂ ⟶ ℂ ) |
24 |
6
|
a1i |
⊢ ( ⊤ → ℝ ⊆ ℂ ) |
25 |
23 24
|
feqresmpt |
⊢ ( ⊤ → ( sin ↾ ℝ ) = ( 𝑦 ∈ ℝ ↦ ( sin ‘ 𝑦 ) ) ) |
26 |
25
|
mptru |
⊢ ( sin ↾ ℝ ) = ( 𝑦 ∈ ℝ ↦ ( sin ‘ 𝑦 ) ) |
27 |
26
|
mptpreima |
⊢ ( ◡ ( sin ↾ ℝ ) “ ( ℂ ∖ { 0 } ) ) = { 𝑦 ∈ ℝ ∣ ( sin ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) } |
28 |
21 1 27
|
3eqtr4i |
⊢ 𝐷 = ( ◡ ( sin ↾ ℝ ) “ ( ℂ ∖ { 0 } ) ) |
29 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
30 |
12 28 29
|
3eltr4i |
⊢ 𝐷 ∈ ( topGen ‘ ran (,) ) |