Metamath Proof Explorer


Theorem resuppsinopn

Description: The support of sin ( df-supp ) restricted to the reals is an open set. (Contributed by SN, 7-Oct-2025)

Ref Expression
Hypothesis readvcot.d 𝐷 = { 𝑦 ∈ ℝ ∣ ( sin ‘ 𝑦 ) ≠ 0 }
Assertion resuppsinopn 𝐷 ∈ ( topGen ‘ ran (,) )

Proof

Step Hyp Ref Expression
1 readvcot.d 𝐷 = { 𝑦 ∈ ℝ ∣ ( sin ‘ 𝑦 ) ≠ 0 }
2 sincn sin ∈ ( ℂ –cn→ ℂ )
3 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
4 3 cncfcn1 ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) )
5 2 4 eleqtri sin ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) )
6 ax-resscn ℝ ⊆ ℂ
7 unicntop ℂ = ( TopOpen ‘ ℂfld )
8 7 cnrest ( ( sin ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ℝ ⊆ ℂ ) → ( sin ↾ ℝ ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( TopOpen ‘ ℂfld ) ) )
9 5 6 8 mp2an ( sin ↾ ℝ ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( TopOpen ‘ ℂfld ) )
10 cnn0opn ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld )
11 cnima ( ( ( sin ↾ ℝ ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) ) → ( ( sin ↾ ℝ ) “ ( ℂ ∖ { 0 } ) ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) )
12 9 10 11 mp2an ( ( sin ↾ ℝ ) “ ( ℂ ∖ { 0 } ) ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
13 resincl ( 𝑦 ∈ ℝ → ( sin ‘ 𝑦 ) ∈ ℝ )
14 13 recnd ( 𝑦 ∈ ℝ → ( sin ‘ 𝑦 ) ∈ ℂ )
15 14 adantr ( ( 𝑦 ∈ ℝ ∧ ( sin ‘ 𝑦 ) ≠ 0 ) → ( sin ‘ 𝑦 ) ∈ ℂ )
16 simpr ( ( 𝑦 ∈ ℝ ∧ ( sin ‘ 𝑦 ) ≠ 0 ) → ( sin ‘ 𝑦 ) ≠ 0 )
17 15 16 eldifsnd ( ( 𝑦 ∈ ℝ ∧ ( sin ‘ 𝑦 ) ≠ 0 ) → ( sin ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) )
18 eldifsni ( ( sin ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) → ( sin ‘ 𝑦 ) ≠ 0 )
19 18 adantl ( ( 𝑦 ∈ ℝ ∧ ( sin ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) → ( sin ‘ 𝑦 ) ≠ 0 )
20 17 19 impbida ( 𝑦 ∈ ℝ → ( ( sin ‘ 𝑦 ) ≠ 0 ↔ ( sin ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) )
21 20 rabbiia { 𝑦 ∈ ℝ ∣ ( sin ‘ 𝑦 ) ≠ 0 } = { 𝑦 ∈ ℝ ∣ ( sin ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) }
22 sinf sin : ℂ ⟶ ℂ
23 22 a1i ( ⊤ → sin : ℂ ⟶ ℂ )
24 6 a1i ( ⊤ → ℝ ⊆ ℂ )
25 23 24 feqresmpt ( ⊤ → ( sin ↾ ℝ ) = ( 𝑦 ∈ ℝ ↦ ( sin ‘ 𝑦 ) ) )
26 25 mptru ( sin ↾ ℝ ) = ( 𝑦 ∈ ℝ ↦ ( sin ‘ 𝑦 ) )
27 26 mptpreima ( ( sin ↾ ℝ ) “ ( ℂ ∖ { 0 } ) ) = { 𝑦 ∈ ℝ ∣ ( sin ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) }
28 21 1 27 3eqtr4i 𝐷 = ( ( sin ↾ ℝ ) “ ( ℂ ∖ { 0 } ) )
29 tgioo4 ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ )
30 12 28 29 3eltr4i 𝐷 ∈ ( topGen ‘ ran (,) )