Step |
Hyp |
Ref |
Expression |
1 |
|
readvcot.d |
|- D = { y e. RR | ( sin ` y ) =/= 0 } |
2 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
3 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
4 |
3
|
cncfcn1 |
|- ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
5 |
2 4
|
eleqtri |
|- sin e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
6 |
|
ax-resscn |
|- RR C_ CC |
7 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
8 |
7
|
cnrest |
|- ( ( sin e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ RR C_ CC ) -> ( sin |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( TopOpen ` CCfld ) ) ) |
9 |
5 6 8
|
mp2an |
|- ( sin |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( TopOpen ` CCfld ) ) |
10 |
|
cnn0opn |
|- ( CC \ { 0 } ) e. ( TopOpen ` CCfld ) |
11 |
|
cnima |
|- ( ( ( sin |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( TopOpen ` CCfld ) ) /\ ( CC \ { 0 } ) e. ( TopOpen ` CCfld ) ) -> ( `' ( sin |` RR ) " ( CC \ { 0 } ) ) e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
12 |
9 10 11
|
mp2an |
|- ( `' ( sin |` RR ) " ( CC \ { 0 } ) ) e. ( ( TopOpen ` CCfld ) |`t RR ) |
13 |
|
resincl |
|- ( y e. RR -> ( sin ` y ) e. RR ) |
14 |
13
|
recnd |
|- ( y e. RR -> ( sin ` y ) e. CC ) |
15 |
14
|
adantr |
|- ( ( y e. RR /\ ( sin ` y ) =/= 0 ) -> ( sin ` y ) e. CC ) |
16 |
|
simpr |
|- ( ( y e. RR /\ ( sin ` y ) =/= 0 ) -> ( sin ` y ) =/= 0 ) |
17 |
15 16
|
eldifsnd |
|- ( ( y e. RR /\ ( sin ` y ) =/= 0 ) -> ( sin ` y ) e. ( CC \ { 0 } ) ) |
18 |
|
eldifsni |
|- ( ( sin ` y ) e. ( CC \ { 0 } ) -> ( sin ` y ) =/= 0 ) |
19 |
18
|
adantl |
|- ( ( y e. RR /\ ( sin ` y ) e. ( CC \ { 0 } ) ) -> ( sin ` y ) =/= 0 ) |
20 |
17 19
|
impbida |
|- ( y e. RR -> ( ( sin ` y ) =/= 0 <-> ( sin ` y ) e. ( CC \ { 0 } ) ) ) |
21 |
20
|
rabbiia |
|- { y e. RR | ( sin ` y ) =/= 0 } = { y e. RR | ( sin ` y ) e. ( CC \ { 0 } ) } |
22 |
|
sinf |
|- sin : CC --> CC |
23 |
22
|
a1i |
|- ( T. -> sin : CC --> CC ) |
24 |
6
|
a1i |
|- ( T. -> RR C_ CC ) |
25 |
23 24
|
feqresmpt |
|- ( T. -> ( sin |` RR ) = ( y e. RR |-> ( sin ` y ) ) ) |
26 |
25
|
mptru |
|- ( sin |` RR ) = ( y e. RR |-> ( sin ` y ) ) |
27 |
26
|
mptpreima |
|- ( `' ( sin |` RR ) " ( CC \ { 0 } ) ) = { y e. RR | ( sin ` y ) e. ( CC \ { 0 } ) } |
28 |
21 1 27
|
3eqtr4i |
|- D = ( `' ( sin |` RR ) " ( CC \ { 0 } ) ) |
29 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
30 |
12 28 29
|
3eltr4i |
|- D e. ( topGen ` ran (,) ) |