| Step |
Hyp |
Ref |
Expression |
| 1 |
|
readvcot.d |
|- D = { y e. RR | ( sin ` y ) =/= 0 } |
| 2 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
| 3 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 4 |
3
|
cncfcn1 |
|- ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
| 5 |
2 4
|
eleqtri |
|- sin e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
| 6 |
|
ax-resscn |
|- RR C_ CC |
| 7 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
| 8 |
7
|
cnrest |
|- ( ( sin e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ RR C_ CC ) -> ( sin |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( TopOpen ` CCfld ) ) ) |
| 9 |
5 6 8
|
mp2an |
|- ( sin |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( TopOpen ` CCfld ) ) |
| 10 |
|
cnn0opn |
|- ( CC \ { 0 } ) e. ( TopOpen ` CCfld ) |
| 11 |
|
cnima |
|- ( ( ( sin |` RR ) e. ( ( ( TopOpen ` CCfld ) |`t RR ) Cn ( TopOpen ` CCfld ) ) /\ ( CC \ { 0 } ) e. ( TopOpen ` CCfld ) ) -> ( `' ( sin |` RR ) " ( CC \ { 0 } ) ) e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 12 |
9 10 11
|
mp2an |
|- ( `' ( sin |` RR ) " ( CC \ { 0 } ) ) e. ( ( TopOpen ` CCfld ) |`t RR ) |
| 13 |
|
resincl |
|- ( y e. RR -> ( sin ` y ) e. RR ) |
| 14 |
13
|
recnd |
|- ( y e. RR -> ( sin ` y ) e. CC ) |
| 15 |
14
|
adantr |
|- ( ( y e. RR /\ ( sin ` y ) =/= 0 ) -> ( sin ` y ) e. CC ) |
| 16 |
|
simpr |
|- ( ( y e. RR /\ ( sin ` y ) =/= 0 ) -> ( sin ` y ) =/= 0 ) |
| 17 |
15 16
|
eldifsnd |
|- ( ( y e. RR /\ ( sin ` y ) =/= 0 ) -> ( sin ` y ) e. ( CC \ { 0 } ) ) |
| 18 |
|
eldifsni |
|- ( ( sin ` y ) e. ( CC \ { 0 } ) -> ( sin ` y ) =/= 0 ) |
| 19 |
18
|
adantl |
|- ( ( y e. RR /\ ( sin ` y ) e. ( CC \ { 0 } ) ) -> ( sin ` y ) =/= 0 ) |
| 20 |
17 19
|
impbida |
|- ( y e. RR -> ( ( sin ` y ) =/= 0 <-> ( sin ` y ) e. ( CC \ { 0 } ) ) ) |
| 21 |
20
|
rabbiia |
|- { y e. RR | ( sin ` y ) =/= 0 } = { y e. RR | ( sin ` y ) e. ( CC \ { 0 } ) } |
| 22 |
|
sinf |
|- sin : CC --> CC |
| 23 |
22
|
a1i |
|- ( T. -> sin : CC --> CC ) |
| 24 |
6
|
a1i |
|- ( T. -> RR C_ CC ) |
| 25 |
23 24
|
feqresmpt |
|- ( T. -> ( sin |` RR ) = ( y e. RR |-> ( sin ` y ) ) ) |
| 26 |
25
|
mptru |
|- ( sin |` RR ) = ( y e. RR |-> ( sin ` y ) ) |
| 27 |
26
|
mptpreima |
|- ( `' ( sin |` RR ) " ( CC \ { 0 } ) ) = { y e. RR | ( sin ` y ) e. ( CC \ { 0 } ) } |
| 28 |
21 1 27
|
3eqtr4i |
|- D = ( `' ( sin |` RR ) " ( CC \ { 0 } ) ) |
| 29 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 30 |
12 28 29
|
3eltr4i |
|- D e. ( topGen ` ran (,) ) |