| Step |
Hyp |
Ref |
Expression |
| 1 |
|
readvcot.d |
|- D = { y e. RR | ( sin ` y ) =/= 0 } |
| 2 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 3 |
2
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
| 4 |
|
fveq2 |
|- ( y = x -> ( sin ` y ) = ( sin ` x ) ) |
| 5 |
4
|
neeq1d |
|- ( y = x -> ( ( sin ` y ) =/= 0 <-> ( sin ` x ) =/= 0 ) ) |
| 6 |
5 1
|
elrab2 |
|- ( x e. D <-> ( x e. RR /\ ( sin ` x ) =/= 0 ) ) |
| 7 |
|
resincl |
|- ( x e. RR -> ( sin ` x ) e. RR ) |
| 8 |
7
|
adantr |
|- ( ( x e. RR /\ ( sin ` x ) =/= 0 ) -> ( sin ` x ) e. RR ) |
| 9 |
|
simpr |
|- ( ( x e. RR /\ ( sin ` x ) =/= 0 ) -> ( sin ` x ) =/= 0 ) |
| 10 |
8 9
|
eldifsnd |
|- ( ( x e. RR /\ ( sin ` x ) =/= 0 ) -> ( sin ` x ) e. ( RR \ { 0 } ) ) |
| 11 |
6 10
|
sylbi |
|- ( x e. D -> ( sin ` x ) e. ( RR \ { 0 } ) ) |
| 12 |
11
|
adantl |
|- ( ( T. /\ x e. D ) -> ( sin ` x ) e. ( RR \ { 0 } ) ) |
| 13 |
|
fvexd |
|- ( ( T. /\ x e. D ) -> ( cos ` x ) e. _V ) |
| 14 |
|
eldifi |
|- ( z e. ( RR \ { 0 } ) -> z e. RR ) |
| 15 |
14
|
adantl |
|- ( ( T. /\ z e. ( RR \ { 0 } ) ) -> z e. RR ) |
| 16 |
15
|
recnd |
|- ( ( T. /\ z e. ( RR \ { 0 } ) ) -> z e. CC ) |
| 17 |
16
|
abscld |
|- ( ( T. /\ z e. ( RR \ { 0 } ) ) -> ( abs ` z ) e. RR ) |
| 18 |
17
|
recnd |
|- ( ( T. /\ z e. ( RR \ { 0 } ) ) -> ( abs ` z ) e. CC ) |
| 19 |
|
eldifsni |
|- ( z e. ( RR \ { 0 } ) -> z =/= 0 ) |
| 20 |
19
|
adantl |
|- ( ( T. /\ z e. ( RR \ { 0 } ) ) -> z =/= 0 ) |
| 21 |
16 20
|
absne0d |
|- ( ( T. /\ z e. ( RR \ { 0 } ) ) -> ( abs ` z ) =/= 0 ) |
| 22 |
18 21
|
logcld |
|- ( ( T. /\ z e. ( RR \ { 0 } ) ) -> ( log ` ( abs ` z ) ) e. CC ) |
| 23 |
|
ovexd |
|- ( ( T. /\ z e. ( RR \ { 0 } ) ) -> ( 1 / z ) e. _V ) |
| 24 |
7
|
recnd |
|- ( x e. RR -> ( sin ` x ) e. CC ) |
| 25 |
24
|
adantl |
|- ( ( T. /\ x e. RR ) -> ( sin ` x ) e. CC ) |
| 26 |
|
fvexd |
|- ( ( T. /\ x e. RR ) -> ( cos ` x ) e. _V ) |
| 27 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 28 |
|
cnopn |
|- CC e. ( TopOpen ` CCfld ) |
| 29 |
28
|
a1i |
|- ( T. -> CC e. ( TopOpen ` CCfld ) ) |
| 30 |
|
ax-resscn |
|- RR C_ CC |
| 31 |
|
dfss2 |
|- ( RR C_ CC <-> ( RR i^i CC ) = RR ) |
| 32 |
30 31
|
mpbi |
|- ( RR i^i CC ) = RR |
| 33 |
32
|
a1i |
|- ( T. -> ( RR i^i CC ) = RR ) |
| 34 |
|
sincl |
|- ( x e. CC -> ( sin ` x ) e. CC ) |
| 35 |
34
|
adantl |
|- ( ( T. /\ x e. CC ) -> ( sin ` x ) e. CC ) |
| 36 |
|
fvexd |
|- ( ( T. /\ x e. CC ) -> ( cos ` x ) e. _V ) |
| 37 |
|
dvsin |
|- ( CC _D sin ) = cos |
| 38 |
|
sinf |
|- sin : CC --> CC |
| 39 |
38
|
a1i |
|- ( T. -> sin : CC --> CC ) |
| 40 |
39
|
feqmptd |
|- ( T. -> sin = ( x e. CC |-> ( sin ` x ) ) ) |
| 41 |
40
|
oveq2d |
|- ( T. -> ( CC _D sin ) = ( CC _D ( x e. CC |-> ( sin ` x ) ) ) ) |
| 42 |
|
cosf |
|- cos : CC --> CC |
| 43 |
42
|
a1i |
|- ( T. -> cos : CC --> CC ) |
| 44 |
43
|
feqmptd |
|- ( T. -> cos = ( x e. CC |-> ( cos ` x ) ) ) |
| 45 |
37 41 44
|
3eqtr3a |
|- ( T. -> ( CC _D ( x e. CC |-> ( sin ` x ) ) ) = ( x e. CC |-> ( cos ` x ) ) ) |
| 46 |
27 3 29 33 35 36 45
|
dvmptres3 |
|- ( T. -> ( RR _D ( x e. RR |-> ( sin ` x ) ) ) = ( x e. RR |-> ( cos ` x ) ) ) |
| 47 |
1
|
ssrab3 |
|- D C_ RR |
| 48 |
47
|
a1i |
|- ( T. -> D C_ RR ) |
| 49 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 50 |
1
|
resuppsinopn |
|- D e. ( topGen ` ran (,) ) |
| 51 |
50
|
a1i |
|- ( T. -> D e. ( topGen ` ran (,) ) ) |
| 52 |
3 25 26 46 48 49 27 51
|
dvmptres |
|- ( T. -> ( RR _D ( x e. D |-> ( sin ` x ) ) ) = ( x e. D |-> ( cos ` x ) ) ) |
| 53 |
|
eqid |
|- ( RR \ { 0 } ) = ( RR \ { 0 } ) |
| 54 |
53
|
readvrec |
|- ( RR _D ( z e. ( RR \ { 0 } ) |-> ( log ` ( abs ` z ) ) ) ) = ( z e. ( RR \ { 0 } ) |-> ( 1 / z ) ) |
| 55 |
54
|
a1i |
|- ( T. -> ( RR _D ( z e. ( RR \ { 0 } ) |-> ( log ` ( abs ` z ) ) ) ) = ( z e. ( RR \ { 0 } ) |-> ( 1 / z ) ) ) |
| 56 |
|
2fveq3 |
|- ( z = ( sin ` x ) -> ( log ` ( abs ` z ) ) = ( log ` ( abs ` ( sin ` x ) ) ) ) |
| 57 |
|
oveq2 |
|- ( z = ( sin ` x ) -> ( 1 / z ) = ( 1 / ( sin ` x ) ) ) |
| 58 |
3 3 12 13 22 23 52 55 56 57
|
dvmptco |
|- ( T. -> ( RR _D ( x e. D |-> ( log ` ( abs ` ( sin ` x ) ) ) ) ) = ( x e. D |-> ( ( 1 / ( sin ` x ) ) x. ( cos ` x ) ) ) ) |
| 59 |
58
|
mptru |
|- ( RR _D ( x e. D |-> ( log ` ( abs ` ( sin ` x ) ) ) ) ) = ( x e. D |-> ( ( 1 / ( sin ` x ) ) x. ( cos ` x ) ) ) |
| 60 |
6
|
simplbi |
|- ( x e. D -> x e. RR ) |
| 61 |
60
|
recoscld |
|- ( x e. D -> ( cos ` x ) e. RR ) |
| 62 |
61
|
recnd |
|- ( x e. D -> ( cos ` x ) e. CC ) |
| 63 |
6 8
|
sylbi |
|- ( x e. D -> ( sin ` x ) e. RR ) |
| 64 |
63
|
recnd |
|- ( x e. D -> ( sin ` x ) e. CC ) |
| 65 |
6 9
|
sylbi |
|- ( x e. D -> ( sin ` x ) =/= 0 ) |
| 66 |
62 64 65
|
divrec2d |
|- ( x e. D -> ( ( cos ` x ) / ( sin ` x ) ) = ( ( 1 / ( sin ` x ) ) x. ( cos ` x ) ) ) |
| 67 |
66
|
mpteq2ia |
|- ( x e. D |-> ( ( cos ` x ) / ( sin ` x ) ) ) = ( x e. D |-> ( ( 1 / ( sin ` x ) ) x. ( cos ` x ) ) ) |
| 68 |
59 67
|
eqtr4i |
|- ( RR _D ( x e. D |-> ( log ` ( abs ` ( sin ` x ) ) ) ) ) = ( x e. D |-> ( ( cos ` x ) / ( sin ` x ) ) ) |