Step |
Hyp |
Ref |
Expression |
1 |
|
redvabs.d |
|- D = ( RR \ { 0 } ) |
2 |
|
reelprrecn |
|- RR e. { RR , CC } |
3 |
2
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
4 |
|
cnelprrecn |
|- CC e. { RR , CC } |
5 |
4
|
a1i |
|- ( T. -> CC e. { RR , CC } ) |
6 |
|
dfrp2 |
|- RR+ = ( 0 (,) +oo ) |
7 |
|
mnfxr |
|- -oo e. RR* |
8 |
7
|
a1i |
|- ( T. -> -oo e. RR* ) |
9 |
|
0xr |
|- 0 e. RR* |
10 |
9
|
a1i |
|- ( T. -> 0 e. RR* ) |
11 |
|
pnfxr |
|- +oo e. RR* |
12 |
11
|
a1i |
|- ( T. -> +oo e. RR* ) |
13 |
8 10 12
|
iocioodisjd |
|- ( T. -> ( ( -oo (,] 0 ) i^i ( 0 (,) +oo ) ) = (/) ) |
14 |
13
|
mptru |
|- ( ( -oo (,] 0 ) i^i ( 0 (,) +oo ) ) = (/) |
15 |
14
|
ineqcomi |
|- ( ( 0 (,) +oo ) i^i ( -oo (,] 0 ) ) = (/) |
16 |
|
disjdif2 |
|- ( ( ( 0 (,) +oo ) i^i ( -oo (,] 0 ) ) = (/) -> ( ( 0 (,) +oo ) \ ( -oo (,] 0 ) ) = ( 0 (,) +oo ) ) |
17 |
15 16
|
ax-mp |
|- ( ( 0 (,) +oo ) \ ( -oo (,] 0 ) ) = ( 0 (,) +oo ) |
18 |
6 17
|
eqtr4i |
|- RR+ = ( ( 0 (,) +oo ) \ ( -oo (,] 0 ) ) |
19 |
|
ioosscn |
|- ( 0 (,) +oo ) C_ CC |
20 |
|
ssdif |
|- ( ( 0 (,) +oo ) C_ CC -> ( ( 0 (,) +oo ) \ ( -oo (,] 0 ) ) C_ ( CC \ ( -oo (,] 0 ) ) ) |
21 |
19 20
|
ax-mp |
|- ( ( 0 (,) +oo ) \ ( -oo (,] 0 ) ) C_ ( CC \ ( -oo (,] 0 ) ) |
22 |
18 21
|
eqsstri |
|- RR+ C_ ( CC \ ( -oo (,] 0 ) ) |
23 |
1
|
eleq2i |
|- ( x e. D <-> x e. ( RR \ { 0 } ) ) |
24 |
|
eldifsn |
|- ( x e. ( RR \ { 0 } ) <-> ( x e. RR /\ x =/= 0 ) ) |
25 |
23 24
|
bitri |
|- ( x e. D <-> ( x e. RR /\ x =/= 0 ) ) |
26 |
25
|
simplbi |
|- ( x e. D -> x e. RR ) |
27 |
26
|
recnd |
|- ( x e. D -> x e. CC ) |
28 |
27
|
adantl |
|- ( ( T. /\ x e. D ) -> x e. CC ) |
29 |
25
|
simprbi |
|- ( x e. D -> x =/= 0 ) |
30 |
29
|
adantl |
|- ( ( T. /\ x e. D ) -> x =/= 0 ) |
31 |
28 30
|
absrpcld |
|- ( ( T. /\ x e. D ) -> ( abs ` x ) e. RR+ ) |
32 |
22 31
|
sselid |
|- ( ( T. /\ x e. D ) -> ( abs ` x ) e. ( CC \ ( -oo (,] 0 ) ) ) |
33 |
|
negex |
|- -u 1 e. _V |
34 |
|
1ex |
|- 1 e. _V |
35 |
33 34
|
ifex |
|- if ( x < 0 , -u 1 , 1 ) e. _V |
36 |
35
|
a1i |
|- ( ( T. /\ x e. D ) -> if ( x < 0 , -u 1 , 1 ) e. _V ) |
37 |
|
eldifi |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) -> y e. CC ) |
38 |
37
|
adantl |
|- ( ( T. /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> y e. CC ) |
39 |
|
eldifn |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) -> -. y e. ( -oo (,] 0 ) ) |
40 |
|
mnflt0 |
|- -oo < 0 |
41 |
|
ubioc1 |
|- ( ( -oo e. RR* /\ 0 e. RR* /\ -oo < 0 ) -> 0 e. ( -oo (,] 0 ) ) |
42 |
7 9 40 41
|
mp3an |
|- 0 e. ( -oo (,] 0 ) |
43 |
|
eleq1 |
|- ( y = 0 -> ( y e. ( -oo (,] 0 ) <-> 0 e. ( -oo (,] 0 ) ) ) |
44 |
42 43
|
mpbiri |
|- ( y = 0 -> y e. ( -oo (,] 0 ) ) |
45 |
44
|
necon3bi |
|- ( -. y e. ( -oo (,] 0 ) -> y =/= 0 ) |
46 |
39 45
|
syl |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) -> y =/= 0 ) |
47 |
46
|
adantl |
|- ( ( T. /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> y =/= 0 ) |
48 |
38 47
|
logcld |
|- ( ( T. /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> ( log ` y ) e. CC ) |
49 |
|
ovexd |
|- ( ( T. /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> ( 1 / y ) e. _V ) |
50 |
1
|
redvmptabs |
|- ( RR _D ( x e. D |-> ( abs ` x ) ) ) = ( x e. D |-> if ( x < 0 , -u 1 , 1 ) ) |
51 |
50
|
a1i |
|- ( T. -> ( RR _D ( x e. D |-> ( abs ` x ) ) ) = ( x e. D |-> if ( x < 0 , -u 1 , 1 ) ) ) |
52 |
|
logf1o |
|- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
53 |
|
f1of |
|- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) |
54 |
52 53
|
ax-mp |
|- log : ( CC \ { 0 } ) --> ran log |
55 |
54
|
a1i |
|- ( T. -> log : ( CC \ { 0 } ) --> ran log ) |
56 |
55
|
feqmptd |
|- ( T. -> log = ( y e. ( CC \ { 0 } ) |-> ( log ` y ) ) ) |
57 |
56
|
mptru |
|- log = ( y e. ( CC \ { 0 } ) |-> ( log ` y ) ) |
58 |
57
|
reseq1i |
|- ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( ( y e. ( CC \ { 0 } ) |-> ( log ` y ) ) |` ( CC \ ( -oo (,] 0 ) ) ) |
59 |
|
c0ex |
|- 0 e. _V |
60 |
59
|
snss |
|- ( 0 e. ( -oo (,] 0 ) <-> { 0 } C_ ( -oo (,] 0 ) ) |
61 |
42 60
|
mpbi |
|- { 0 } C_ ( -oo (,] 0 ) |
62 |
|
sscon |
|- ( { 0 } C_ ( -oo (,] 0 ) -> ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) ) |
63 |
|
resmpt |
|- ( ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) -> ( ( y e. ( CC \ { 0 } ) |-> ( log ` y ) ) |` ( CC \ ( -oo (,] 0 ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) ) |
64 |
61 62 63
|
mp2b |
|- ( ( y e. ( CC \ { 0 } ) |-> ( log ` y ) ) |` ( CC \ ( -oo (,] 0 ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) |
65 |
58 64
|
eqtr2i |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) = ( log |` ( CC \ ( -oo (,] 0 ) ) ) |
66 |
65
|
oveq2i |
|- ( CC _D ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) ) = ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) |
67 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
68 |
67
|
dvlog |
|- ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / y ) ) |
69 |
66 68
|
eqtri |
|- ( CC _D ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / y ) ) |
70 |
69
|
a1i |
|- ( T. -> ( CC _D ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / y ) ) ) |
71 |
|
fveq2 |
|- ( y = ( abs ` x ) -> ( log ` y ) = ( log ` ( abs ` x ) ) ) |
72 |
|
oveq2 |
|- ( y = ( abs ` x ) -> ( 1 / y ) = ( 1 / ( abs ` x ) ) ) |
73 |
3 5 32 36 48 49 51 70 71 72
|
dvmptco |
|- ( T. -> ( RR _D ( x e. D |-> ( log ` ( abs ` x ) ) ) ) = ( x e. D |-> ( ( 1 / ( abs ` x ) ) x. if ( x < 0 , -u 1 , 1 ) ) ) ) |
74 |
73
|
mptru |
|- ( RR _D ( x e. D |-> ( log ` ( abs ` x ) ) ) ) = ( x e. D |-> ( ( 1 / ( abs ` x ) ) x. if ( x < 0 , -u 1 , 1 ) ) ) |
75 |
|
ovif2 |
|- ( ( 1 / ( abs ` x ) ) x. if ( x < 0 , -u 1 , 1 ) ) = if ( x < 0 , ( ( 1 / ( abs ` x ) ) x. -u 1 ) , ( ( 1 / ( abs ` x ) ) x. 1 ) ) |
76 |
|
simpll |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> x e. RR ) |
77 |
76
|
recnd |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> x e. CC ) |
78 |
77
|
abscld |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> ( abs ` x ) e. RR ) |
79 |
78
|
recnd |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> ( abs ` x ) e. CC ) |
80 |
|
simplr |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> x =/= 0 ) |
81 |
77 80
|
absne0d |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> ( abs ` x ) =/= 0 ) |
82 |
79 81
|
reccld |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> ( 1 / ( abs ` x ) ) e. CC ) |
83 |
|
neg1cn |
|- -u 1 e. CC |
84 |
83
|
a1i |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> -u 1 e. CC ) |
85 |
82 84
|
mulcomd |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> ( ( 1 / ( abs ` x ) ) x. -u 1 ) = ( -u 1 x. ( 1 / ( abs ` x ) ) ) ) |
86 |
82
|
mulm1d |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> ( -u 1 x. ( 1 / ( abs ` x ) ) ) = -u ( 1 / ( abs ` x ) ) ) |
87 |
|
1cnd |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> 1 e. CC ) |
88 |
87 79 81
|
divneg2d |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> -u ( 1 / ( abs ` x ) ) = ( 1 / -u ( abs ` x ) ) ) |
89 |
|
0red |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> 0 e. RR ) |
90 |
|
simpr |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> x < 0 ) |
91 |
76 89 90
|
ltled |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> x <_ 0 ) |
92 |
76 91
|
absnidd |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> ( abs ` x ) = -u x ) |
93 |
92
|
eqcomd |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> -u x = ( abs ` x ) ) |
94 |
77 93
|
negcon1ad |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> -u ( abs ` x ) = x ) |
95 |
94
|
oveq2d |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> ( 1 / -u ( abs ` x ) ) = ( 1 / x ) ) |
96 |
88 95
|
eqtrd |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> -u ( 1 / ( abs ` x ) ) = ( 1 / x ) ) |
97 |
85 86 96
|
3eqtrd |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) -> ( ( 1 / ( abs ` x ) ) x. -u 1 ) = ( 1 / x ) ) |
98 |
25 97
|
sylanb |
|- ( ( x e. D /\ x < 0 ) -> ( ( 1 / ( abs ` x ) ) x. -u 1 ) = ( 1 / x ) ) |
99 |
|
recn |
|- ( x e. RR -> x e. CC ) |
100 |
99
|
abscld |
|- ( x e. RR -> ( abs ` x ) e. RR ) |
101 |
100
|
ad2antrr |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ -. x < 0 ) -> ( abs ` x ) e. RR ) |
102 |
99
|
ad2antrr |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ -. x < 0 ) -> x e. CC ) |
103 |
|
simplr |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ -. x < 0 ) -> x =/= 0 ) |
104 |
102 103
|
absne0d |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ -. x < 0 ) -> ( abs ` x ) =/= 0 ) |
105 |
101 104
|
rereccld |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ -. x < 0 ) -> ( 1 / ( abs ` x ) ) e. RR ) |
106 |
105
|
recnd |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ -. x < 0 ) -> ( 1 / ( abs ` x ) ) e. CC ) |
107 |
106
|
mulridd |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ -. x < 0 ) -> ( ( 1 / ( abs ` x ) ) x. 1 ) = ( 1 / ( abs ` x ) ) ) |
108 |
|
simpll |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ -. x < 0 ) -> x e. RR ) |
109 |
|
0red |
|- ( ( x e. RR /\ x =/= 0 ) -> 0 e. RR ) |
110 |
|
simpl |
|- ( ( x e. RR /\ x =/= 0 ) -> x e. RR ) |
111 |
109 110
|
lenltd |
|- ( ( x e. RR /\ x =/= 0 ) -> ( 0 <_ x <-> -. x < 0 ) ) |
112 |
111
|
biimpar |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ -. x < 0 ) -> 0 <_ x ) |
113 |
108 112
|
absidd |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ -. x < 0 ) -> ( abs ` x ) = x ) |
114 |
113
|
oveq2d |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ -. x < 0 ) -> ( 1 / ( abs ` x ) ) = ( 1 / x ) ) |
115 |
107 114
|
eqtrd |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ -. x < 0 ) -> ( ( 1 / ( abs ` x ) ) x. 1 ) = ( 1 / x ) ) |
116 |
25 115
|
sylanb |
|- ( ( x e. D /\ -. x < 0 ) -> ( ( 1 / ( abs ` x ) ) x. 1 ) = ( 1 / x ) ) |
117 |
98 116
|
ifeqda |
|- ( x e. D -> if ( x < 0 , ( ( 1 / ( abs ` x ) ) x. -u 1 ) , ( ( 1 / ( abs ` x ) ) x. 1 ) ) = ( 1 / x ) ) |
118 |
75 117
|
eqtrid |
|- ( x e. D -> ( ( 1 / ( abs ` x ) ) x. if ( x < 0 , -u 1 , 1 ) ) = ( 1 / x ) ) |
119 |
118
|
mpteq2ia |
|- ( x e. D |-> ( ( 1 / ( abs ` x ) ) x. if ( x < 0 , -u 1 , 1 ) ) ) = ( x e. D |-> ( 1 / x ) ) |
120 |
74 119
|
eqtri |
|- ( RR _D ( x e. D |-> ( log ` ( abs ` x ) ) ) ) = ( x e. D |-> ( 1 / x ) ) |