Step |
Hyp |
Ref |
Expression |
1 |
|
redvabs.d |
|- D = ( RR \ { 0 } ) |
2 |
|
partfun |
|- ( x e. D |-> if ( x e. { y | y < 0 } , -u 1 , 1 ) ) = ( ( x e. ( D i^i { y | y < 0 } ) |-> -u 1 ) u. ( x e. ( D \ { y | y < 0 } ) |-> 1 ) ) |
3 |
|
reelprrecn |
|- RR e. { RR , CC } |
4 |
3
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
5 |
|
inss1 |
|- ( D i^i { y | y < 0 } ) C_ D |
6 |
|
difss |
|- ( RR \ { 0 } ) C_ RR |
7 |
1 6
|
eqsstri |
|- D C_ RR |
8 |
|
ax-resscn |
|- RR C_ CC |
9 |
7 8
|
sstri |
|- D C_ CC |
10 |
5 9
|
sstri |
|- ( D i^i { y | y < 0 } ) C_ CC |
11 |
10
|
sseli |
|- ( x e. ( D i^i { y | y < 0 } ) -> x e. CC ) |
12 |
11
|
adantl |
|- ( ( T. /\ x e. ( D i^i { y | y < 0 } ) ) -> x e. CC ) |
13 |
|
1cnd |
|- ( ( T. /\ x e. ( D i^i { y | y < 0 } ) ) -> 1 e. CC ) |
14 |
8
|
a1i |
|- ( T. -> RR C_ CC ) |
15 |
14
|
sselda |
|- ( ( T. /\ x e. RR ) -> x e. CC ) |
16 |
|
1red |
|- ( ( T. /\ x e. RR ) -> 1 e. RR ) |
17 |
4
|
dvmptid |
|- ( T. -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) |
18 |
|
ssinss1 |
|- ( D C_ RR -> ( D i^i { y | y < 0 } ) C_ RR ) |
19 |
7 18
|
mp1i |
|- ( T. -> ( D i^i { y | y < 0 } ) C_ RR ) |
20 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
21 |
20
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
22 |
1
|
eleq2i |
|- ( x e. D <-> x e. ( RR \ { 0 } ) ) |
23 |
|
eldifsn |
|- ( x e. ( RR \ { 0 } ) <-> ( x e. RR /\ x =/= 0 ) ) |
24 |
22 23
|
bitri |
|- ( x e. D <-> ( x e. RR /\ x =/= 0 ) ) |
25 |
|
vex |
|- x e. _V |
26 |
|
breq1 |
|- ( y = x -> ( y < 0 <-> x < 0 ) ) |
27 |
25 26
|
elab |
|- ( x e. { y | y < 0 } <-> x < 0 ) |
28 |
24 27
|
anbi12i |
|- ( ( x e. D /\ x e. { y | y < 0 } ) <-> ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) ) |
29 |
|
lt0ne0 |
|- ( ( x e. RR /\ x < 0 ) -> x =/= 0 ) |
30 |
29
|
expcom |
|- ( x < 0 -> ( x e. RR -> x =/= 0 ) ) |
31 |
30
|
pm4.71d |
|- ( x < 0 -> ( x e. RR <-> ( x e. RR /\ x =/= 0 ) ) ) |
32 |
31
|
bicomd |
|- ( x < 0 -> ( ( x e. RR /\ x =/= 0 ) <-> x e. RR ) ) |
33 |
32
|
pm5.32ri |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ x < 0 ) <-> ( x e. RR /\ x < 0 ) ) |
34 |
28 33
|
bitri |
|- ( ( x e. D /\ x e. { y | y < 0 } ) <-> ( x e. RR /\ x < 0 ) ) |
35 |
|
elin |
|- ( x e. ( D i^i { y | y < 0 } ) <-> ( x e. D /\ x e. { y | y < 0 } ) ) |
36 |
|
0xr |
|- 0 e. RR* |
37 |
|
elioomnf |
|- ( 0 e. RR* -> ( x e. ( -oo (,) 0 ) <-> ( x e. RR /\ x < 0 ) ) ) |
38 |
36 37
|
ax-mp |
|- ( x e. ( -oo (,) 0 ) <-> ( x e. RR /\ x < 0 ) ) |
39 |
34 35 38
|
3bitr4i |
|- ( x e. ( D i^i { y | y < 0 } ) <-> x e. ( -oo (,) 0 ) ) |
40 |
39
|
eqriv |
|- ( D i^i { y | y < 0 } ) = ( -oo (,) 0 ) |
41 |
|
iooretop |
|- ( -oo (,) 0 ) e. ( topGen ` ran (,) ) |
42 |
40 41
|
eqeltri |
|- ( D i^i { y | y < 0 } ) e. ( topGen ` ran (,) ) |
43 |
42
|
a1i |
|- ( T. -> ( D i^i { y | y < 0 } ) e. ( topGen ` ran (,) ) ) |
44 |
4 15 16 17 19 21 20 43
|
dvmptres |
|- ( T. -> ( RR _D ( x e. ( D i^i { y | y < 0 } ) |-> x ) ) = ( x e. ( D i^i { y | y < 0 } ) |-> 1 ) ) |
45 |
4 12 13 44
|
dvmptneg |
|- ( T. -> ( RR _D ( x e. ( D i^i { y | y < 0 } ) |-> -u x ) ) = ( x e. ( D i^i { y | y < 0 } ) |-> -u 1 ) ) |
46 |
45
|
mptru |
|- ( RR _D ( x e. ( D i^i { y | y < 0 } ) |-> -u x ) ) = ( x e. ( D i^i { y | y < 0 } ) |-> -u 1 ) |
47 |
7
|
a1i |
|- ( T. -> D C_ RR ) |
48 |
47
|
ssdifssd |
|- ( T. -> ( D \ { y | y < 0 } ) C_ RR ) |
49 |
27
|
notbii |
|- ( -. x e. { y | y < 0 } <-> -. x < 0 ) |
50 |
24 49
|
anbi12i |
|- ( ( x e. D /\ -. x e. { y | y < 0 } ) <-> ( ( x e. RR /\ x =/= 0 ) /\ -. x < 0 ) ) |
51 |
|
anass |
|- ( ( ( x e. RR /\ x =/= 0 ) /\ -. x < 0 ) <-> ( x e. RR /\ ( x =/= 0 /\ -. x < 0 ) ) ) |
52 |
|
elre0re |
|- ( x e. RR -> 0 e. RR ) |
53 |
|
id |
|- ( x e. RR -> x e. RR ) |
54 |
52 53
|
lttrid |
|- ( x e. RR -> ( 0 < x <-> -. ( 0 = x \/ x < 0 ) ) ) |
55 |
|
ioran |
|- ( -. ( 0 = x \/ x < 0 ) <-> ( -. 0 = x /\ -. x < 0 ) ) |
56 |
|
nesym |
|- ( x =/= 0 <-> -. 0 = x ) |
57 |
56
|
bicomi |
|- ( -. 0 = x <-> x =/= 0 ) |
58 |
55 57
|
bianbi |
|- ( -. ( 0 = x \/ x < 0 ) <-> ( x =/= 0 /\ -. x < 0 ) ) |
59 |
54 58
|
bitr2di |
|- ( x e. RR -> ( ( x =/= 0 /\ -. x < 0 ) <-> 0 < x ) ) |
60 |
59
|
pm5.32i |
|- ( ( x e. RR /\ ( x =/= 0 /\ -. x < 0 ) ) <-> ( x e. RR /\ 0 < x ) ) |
61 |
50 51 60
|
3bitri |
|- ( ( x e. D /\ -. x e. { y | y < 0 } ) <-> ( x e. RR /\ 0 < x ) ) |
62 |
|
eldif |
|- ( x e. ( D \ { y | y < 0 } ) <-> ( x e. D /\ -. x e. { y | y < 0 } ) ) |
63 |
|
repos |
|- ( x e. ( 0 (,) +oo ) <-> ( x e. RR /\ 0 < x ) ) |
64 |
61 62 63
|
3bitr4i |
|- ( x e. ( D \ { y | y < 0 } ) <-> x e. ( 0 (,) +oo ) ) |
65 |
64
|
eqriv |
|- ( D \ { y | y < 0 } ) = ( 0 (,) +oo ) |
66 |
|
iooretop |
|- ( 0 (,) +oo ) e. ( topGen ` ran (,) ) |
67 |
65 66
|
eqeltri |
|- ( D \ { y | y < 0 } ) e. ( topGen ` ran (,) ) |
68 |
67
|
a1i |
|- ( T. -> ( D \ { y | y < 0 } ) e. ( topGen ` ran (,) ) ) |
69 |
4 15 16 17 48 21 20 68
|
dvmptres |
|- ( T. -> ( RR _D ( x e. ( D \ { y | y < 0 } ) |-> x ) ) = ( x e. ( D \ { y | y < 0 } ) |-> 1 ) ) |
70 |
69
|
mptru |
|- ( RR _D ( x e. ( D \ { y | y < 0 } ) |-> x ) ) = ( x e. ( D \ { y | y < 0 } ) |-> 1 ) |
71 |
46 70
|
uneq12i |
|- ( ( RR _D ( x e. ( D i^i { y | y < 0 } ) |-> -u x ) ) u. ( RR _D ( x e. ( D \ { y | y < 0 } ) |-> x ) ) ) = ( ( x e. ( D i^i { y | y < 0 } ) |-> -u 1 ) u. ( x e. ( D \ { y | y < 0 } ) |-> 1 ) ) |
72 |
12
|
negcld |
|- ( ( T. /\ x e. ( D i^i { y | y < 0 } ) ) -> -u x e. CC ) |
73 |
72
|
fmpttd |
|- ( T. -> ( x e. ( D i^i { y | y < 0 } ) |-> -u x ) : ( D i^i { y | y < 0 } ) --> CC ) |
74 |
|
ssdifss |
|- ( D C_ RR -> ( D \ { y | y < 0 } ) C_ RR ) |
75 |
7 74
|
ax-mp |
|- ( D \ { y | y < 0 } ) C_ RR |
76 |
75 8
|
sstri |
|- ( D \ { y | y < 0 } ) C_ CC |
77 |
76
|
a1i |
|- ( T. -> ( D \ { y | y < 0 } ) C_ CC ) |
78 |
77
|
sselda |
|- ( ( T. /\ x e. ( D \ { y | y < 0 } ) ) -> x e. CC ) |
79 |
78
|
fmpttd |
|- ( T. -> ( x e. ( D \ { y | y < 0 } ) |-> x ) : ( D \ { y | y < 0 } ) --> CC ) |
80 |
|
inindif |
|- ( ( D i^i { y | y < 0 } ) i^i ( D \ { y | y < 0 } ) ) = (/) |
81 |
80
|
a1i |
|- ( T. -> ( ( D i^i { y | y < 0 } ) i^i ( D \ { y | y < 0 } ) ) = (/) ) |
82 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
83 |
|
isopn3i |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( D i^i { y | y < 0 } ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( D i^i { y | y < 0 } ) ) = ( D i^i { y | y < 0 } ) ) |
84 |
82 42 83
|
mp2an |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( D i^i { y | y < 0 } ) ) = ( D i^i { y | y < 0 } ) |
85 |
|
isopn3i |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( D \ { y | y < 0 } ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( D \ { y | y < 0 } ) ) = ( D \ { y | y < 0 } ) ) |
86 |
82 67 85
|
mp2an |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( D \ { y | y < 0 } ) ) = ( D \ { y | y < 0 } ) |
87 |
84 86
|
uneq12i |
|- ( ( ( int ` ( topGen ` ran (,) ) ) ` ( D i^i { y | y < 0 } ) ) u. ( ( int ` ( topGen ` ran (,) ) ) ` ( D \ { y | y < 0 } ) ) ) = ( ( D i^i { y | y < 0 } ) u. ( D \ { y | y < 0 } ) ) |
88 |
|
unopn |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( D i^i { y | y < 0 } ) e. ( topGen ` ran (,) ) /\ ( D \ { y | y < 0 } ) e. ( topGen ` ran (,) ) ) -> ( ( D i^i { y | y < 0 } ) u. ( D \ { y | y < 0 } ) ) e. ( topGen ` ran (,) ) ) |
89 |
82 42 67 88
|
mp3an |
|- ( ( D i^i { y | y < 0 } ) u. ( D \ { y | y < 0 } ) ) e. ( topGen ` ran (,) ) |
90 |
|
isopn3i |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( D i^i { y | y < 0 } ) u. ( D \ { y | y < 0 } ) ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( D i^i { y | y < 0 } ) u. ( D \ { y | y < 0 } ) ) ) = ( ( D i^i { y | y < 0 } ) u. ( D \ { y | y < 0 } ) ) ) |
91 |
82 89 90
|
mp2an |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( ( D i^i { y | y < 0 } ) u. ( D \ { y | y < 0 } ) ) ) = ( ( D i^i { y | y < 0 } ) u. ( D \ { y | y < 0 } ) ) |
92 |
87 91
|
eqtr4i |
|- ( ( ( int ` ( topGen ` ran (,) ) ) ` ( D i^i { y | y < 0 } ) ) u. ( ( int ` ( topGen ` ran (,) ) ) ` ( D \ { y | y < 0 } ) ) ) = ( ( int ` ( topGen ` ran (,) ) ) ` ( ( D i^i { y | y < 0 } ) u. ( D \ { y | y < 0 } ) ) ) |
93 |
92
|
a1i |
|- ( T. -> ( ( ( int ` ( topGen ` ran (,) ) ) ` ( D i^i { y | y < 0 } ) ) u. ( ( int ` ( topGen ` ran (,) ) ) ` ( D \ { y | y < 0 } ) ) ) = ( ( int ` ( topGen ` ran (,) ) ) ` ( ( D i^i { y | y < 0 } ) u. ( D \ { y | y < 0 } ) ) ) ) |
94 |
21 20 14 73 79 19 48 81 93
|
dvun |
|- ( T. -> ( ( RR _D ( x e. ( D i^i { y | y < 0 } ) |-> -u x ) ) u. ( RR _D ( x e. ( D \ { y | y < 0 } ) |-> x ) ) ) = ( RR _D ( ( x e. ( D i^i { y | y < 0 } ) |-> -u x ) u. ( x e. ( D \ { y | y < 0 } ) |-> x ) ) ) ) |
95 |
94
|
mptru |
|- ( ( RR _D ( x e. ( D i^i { y | y < 0 } ) |-> -u x ) ) u. ( RR _D ( x e. ( D \ { y | y < 0 } ) |-> x ) ) ) = ( RR _D ( ( x e. ( D i^i { y | y < 0 } ) |-> -u x ) u. ( x e. ( D \ { y | y < 0 } ) |-> x ) ) ) |
96 |
2 71 95
|
3eqtr2ri |
|- ( RR _D ( ( x e. ( D i^i { y | y < 0 } ) |-> -u x ) u. ( x e. ( D \ { y | y < 0 } ) |-> x ) ) ) = ( x e. D |-> if ( x e. { y | y < 0 } , -u 1 , 1 ) ) |
97 |
|
partfun |
|- ( x e. D |-> if ( x e. { y | y < 0 } , -u x , x ) ) = ( ( x e. ( D i^i { y | y < 0 } ) |-> -u x ) u. ( x e. ( D \ { y | y < 0 } ) |-> x ) ) |
98 |
|
elioore |
|- ( x e. ( -oo (,) 0 ) -> x e. RR ) |
99 |
|
0red |
|- ( x e. ( -oo (,) 0 ) -> 0 e. RR ) |
100 |
38
|
simprbi |
|- ( x e. ( -oo (,) 0 ) -> x < 0 ) |
101 |
98 99 100
|
ltled |
|- ( x e. ( -oo (,) 0 ) -> x <_ 0 ) |
102 |
98 101
|
absnidd |
|- ( x e. ( -oo (,) 0 ) -> ( abs ` x ) = -u x ) |
103 |
102
|
eqcomd |
|- ( x e. ( -oo (,) 0 ) -> -u x = ( abs ` x ) ) |
104 |
103 40
|
eleq2s |
|- ( x e. ( D i^i { y | y < 0 } ) -> -u x = ( abs ` x ) ) |
105 |
35 104
|
sylbir |
|- ( ( x e. D /\ x e. { y | y < 0 } ) -> -u x = ( abs ` x ) ) |
106 |
|
rpabsid |
|- ( x e. RR+ -> ( abs ` x ) = x ) |
107 |
106
|
eqcomd |
|- ( x e. RR+ -> x = ( abs ` x ) ) |
108 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
109 |
107 108
|
eleq2s |
|- ( x e. ( 0 (,) +oo ) -> x = ( abs ` x ) ) |
110 |
109 65
|
eleq2s |
|- ( x e. ( D \ { y | y < 0 } ) -> x = ( abs ` x ) ) |
111 |
62 110
|
sylbir |
|- ( ( x e. D /\ -. x e. { y | y < 0 } ) -> x = ( abs ` x ) ) |
112 |
105 111
|
ifeqda |
|- ( x e. D -> if ( x e. { y | y < 0 } , -u x , x ) = ( abs ` x ) ) |
113 |
112
|
mpteq2ia |
|- ( x e. D |-> if ( x e. { y | y < 0 } , -u x , x ) ) = ( x e. D |-> ( abs ` x ) ) |
114 |
97 113
|
eqtr3i |
|- ( ( x e. ( D i^i { y | y < 0 } ) |-> -u x ) u. ( x e. ( D \ { y | y < 0 } ) |-> x ) ) = ( x e. D |-> ( abs ` x ) ) |
115 |
114
|
oveq2i |
|- ( RR _D ( ( x e. ( D i^i { y | y < 0 } ) |-> -u x ) u. ( x e. ( D \ { y | y < 0 } ) |-> x ) ) ) = ( RR _D ( x e. D |-> ( abs ` x ) ) ) |
116 |
|
eqid |
|- 1 = 1 |
117 |
27 116
|
ifbieq2i |
|- if ( x e. { y | y < 0 } , -u 1 , 1 ) = if ( x < 0 , -u 1 , 1 ) |
118 |
117
|
mpteq2i |
|- ( x e. D |-> if ( x e. { y | y < 0 } , -u 1 , 1 ) ) = ( x e. D |-> if ( x < 0 , -u 1 , 1 ) ) |
119 |
96 115 118
|
3eqtr3i |
|- ( RR _D ( x e. D |-> ( abs ` x ) ) ) = ( x e. D |-> if ( x < 0 , -u 1 , 1 ) ) |