Step |
Hyp |
Ref |
Expression |
1 |
|
redvabs.d |
|- D = ( RR \ { 0 } ) |
2 |
|
reelprrecn |
|- RR e. { RR , CC } |
3 |
2
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
4 |
1
|
eleq2i |
|- ( x e. D <-> x e. ( RR \ { 0 } ) ) |
5 |
|
eldifsn |
|- ( x e. ( RR \ { 0 } ) <-> ( x e. RR /\ x =/= 0 ) ) |
6 |
4 5
|
bitri |
|- ( x e. D <-> ( x e. RR /\ x =/= 0 ) ) |
7 |
6
|
simplbi |
|- ( x e. D -> x e. RR ) |
8 |
7
|
recnd |
|- ( x e. D -> x e. CC ) |
9 |
8
|
sqcld |
|- ( x e. D -> ( x ^ 2 ) e. CC ) |
10 |
6
|
simprbi |
|- ( x e. D -> x =/= 0 ) |
11 |
|
sqne0 |
|- ( x e. CC -> ( ( x ^ 2 ) =/= 0 <-> x =/= 0 ) ) |
12 |
8 11
|
syl |
|- ( x e. D -> ( ( x ^ 2 ) =/= 0 <-> x =/= 0 ) ) |
13 |
10 12
|
mpbird |
|- ( x e. D -> ( x ^ 2 ) =/= 0 ) |
14 |
9 13
|
logcld |
|- ( x e. D -> ( log ` ( x ^ 2 ) ) e. CC ) |
15 |
14
|
adantl |
|- ( ( T. /\ x e. D ) -> ( log ` ( x ^ 2 ) ) e. CC ) |
16 |
|
ovexd |
|- ( ( T. /\ x e. D ) -> ( ( 1 / ( x ^ 2 ) ) x. ( 2 x. x ) ) e. _V ) |
17 |
|
cnelprrecn |
|- CC e. { RR , CC } |
18 |
17
|
a1i |
|- ( T. -> CC e. { RR , CC } ) |
19 |
|
incom |
|- ( RR+ i^i ( -oo (,] 0 ) ) = ( ( -oo (,] 0 ) i^i RR+ ) |
20 |
|
dfrp2 |
|- RR+ = ( 0 (,) +oo ) |
21 |
20
|
ineq2i |
|- ( ( -oo (,] 0 ) i^i RR+ ) = ( ( -oo (,] 0 ) i^i ( 0 (,) +oo ) ) |
22 |
|
mnfxr |
|- -oo e. RR* |
23 |
22
|
a1i |
|- ( T. -> -oo e. RR* ) |
24 |
|
0xr |
|- 0 e. RR* |
25 |
24
|
a1i |
|- ( T. -> 0 e. RR* ) |
26 |
|
pnfxr |
|- +oo e. RR* |
27 |
26
|
a1i |
|- ( T. -> +oo e. RR* ) |
28 |
23 25 27
|
iocioodisjd |
|- ( T. -> ( ( -oo (,] 0 ) i^i ( 0 (,) +oo ) ) = (/) ) |
29 |
28
|
mptru |
|- ( ( -oo (,] 0 ) i^i ( 0 (,) +oo ) ) = (/) |
30 |
19 21 29
|
3eqtri |
|- ( RR+ i^i ( -oo (,] 0 ) ) = (/) |
31 |
|
disjdif2 |
|- ( ( RR+ i^i ( -oo (,] 0 ) ) = (/) -> ( RR+ \ ( -oo (,] 0 ) ) = RR+ ) |
32 |
30 31
|
ax-mp |
|- ( RR+ \ ( -oo (,] 0 ) ) = RR+ |
33 |
|
rpsscn |
|- RR+ C_ CC |
34 |
|
ssdif |
|- ( RR+ C_ CC -> ( RR+ \ ( -oo (,] 0 ) ) C_ ( CC \ ( -oo (,] 0 ) ) ) |
35 |
33 34
|
ax-mp |
|- ( RR+ \ ( -oo (,] 0 ) ) C_ ( CC \ ( -oo (,] 0 ) ) |
36 |
32 35
|
eqsstrri |
|- RR+ C_ ( CC \ ( -oo (,] 0 ) ) |
37 |
10
|
adantl |
|- ( ( T. /\ x e. D ) -> x =/= 0 ) |
38 |
|
sqn0rp |
|- ( ( x e. RR /\ x =/= 0 ) -> ( x ^ 2 ) e. RR+ ) |
39 |
7 37 38
|
syl2an2 |
|- ( ( T. /\ x e. D ) -> ( x ^ 2 ) e. RR+ ) |
40 |
36 39
|
sselid |
|- ( ( T. /\ x e. D ) -> ( x ^ 2 ) e. ( CC \ ( -oo (,] 0 ) ) ) |
41 |
|
ovexd |
|- ( ( T. /\ x e. D ) -> ( 2 x. x ) e. _V ) |
42 |
|
eldifi |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) -> y e. CC ) |
43 |
|
eldifn |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) -> -. y e. ( -oo (,] 0 ) ) |
44 |
|
mnflt0 |
|- -oo < 0 |
45 |
|
0le0 |
|- 0 <_ 0 |
46 |
|
elioc1 |
|- ( ( -oo e. RR* /\ 0 e. RR* ) -> ( 0 e. ( -oo (,] 0 ) <-> ( 0 e. RR* /\ -oo < 0 /\ 0 <_ 0 ) ) ) |
47 |
22 24 46
|
mp2an |
|- ( 0 e. ( -oo (,] 0 ) <-> ( 0 e. RR* /\ -oo < 0 /\ 0 <_ 0 ) ) |
48 |
24 44 45 47
|
mpbir3an |
|- 0 e. ( -oo (,] 0 ) |
49 |
|
eleq1 |
|- ( y = 0 -> ( y e. ( -oo (,] 0 ) <-> 0 e. ( -oo (,] 0 ) ) ) |
50 |
48 49
|
mpbiri |
|- ( y = 0 -> y e. ( -oo (,] 0 ) ) |
51 |
50
|
necon3bi |
|- ( -. y e. ( -oo (,] 0 ) -> y =/= 0 ) |
52 |
43 51
|
syl |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) -> y =/= 0 ) |
53 |
42 52
|
logcld |
|- ( y e. ( CC \ ( -oo (,] 0 ) ) -> ( log ` y ) e. CC ) |
54 |
53
|
adantl |
|- ( ( T. /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> ( log ` y ) e. CC ) |
55 |
|
ovexd |
|- ( ( T. /\ y e. ( CC \ ( -oo (,] 0 ) ) ) -> ( 1 / y ) e. _V ) |
56 |
|
recn |
|- ( x e. RR -> x e. CC ) |
57 |
56
|
adantl |
|- ( ( T. /\ x e. RR ) -> x e. CC ) |
58 |
57
|
sqcld |
|- ( ( T. /\ x e. RR ) -> ( x ^ 2 ) e. CC ) |
59 |
|
ovexd |
|- ( ( T. /\ x e. RR ) -> ( 2 x. ( x ^ ( 2 - 1 ) ) ) e. _V ) |
60 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
61 |
|
cnopn |
|- CC e. ( TopOpen ` CCfld ) |
62 |
61
|
a1i |
|- ( T. -> CC e. ( TopOpen ` CCfld ) ) |
63 |
|
ax-resscn |
|- RR C_ CC |
64 |
|
dfss2 |
|- ( RR C_ CC <-> ( RR i^i CC ) = RR ) |
65 |
63 64
|
mpbi |
|- ( RR i^i CC ) = RR |
66 |
65
|
a1i |
|- ( T. -> ( RR i^i CC ) = RR ) |
67 |
|
sqcl |
|- ( x e. CC -> ( x ^ 2 ) e. CC ) |
68 |
67
|
adantl |
|- ( ( T. /\ x e. CC ) -> ( x ^ 2 ) e. CC ) |
69 |
|
ovexd |
|- ( ( T. /\ x e. CC ) -> ( 2 x. ( x ^ ( 2 - 1 ) ) ) e. _V ) |
70 |
|
2nn |
|- 2 e. NN |
71 |
|
dvexp |
|- ( 2 e. NN -> ( CC _D ( x e. CC |-> ( x ^ 2 ) ) ) = ( x e. CC |-> ( 2 x. ( x ^ ( 2 - 1 ) ) ) ) ) |
72 |
70 71
|
mp1i |
|- ( T. -> ( CC _D ( x e. CC |-> ( x ^ 2 ) ) ) = ( x e. CC |-> ( 2 x. ( x ^ ( 2 - 1 ) ) ) ) ) |
73 |
60 3 62 66 68 69 72
|
dvmptres3 |
|- ( T. -> ( RR _D ( x e. RR |-> ( x ^ 2 ) ) ) = ( x e. RR |-> ( 2 x. ( x ^ ( 2 - 1 ) ) ) ) ) |
74 |
7
|
ssriv |
|- D C_ RR |
75 |
74
|
a1i |
|- ( T. -> D C_ RR ) |
76 |
60
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
77 |
|
rehaus |
|- ( topGen ` ran (,) ) e. Haus |
78 |
|
0re |
|- 0 e. RR |
79 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
80 |
79
|
sncld |
|- ( ( ( topGen ` ran (,) ) e. Haus /\ 0 e. RR ) -> { 0 } e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
81 |
77 78 80
|
mp2an |
|- { 0 } e. ( Clsd ` ( topGen ` ran (,) ) ) |
82 |
79
|
cldopn |
|- ( { 0 } e. ( Clsd ` ( topGen ` ran (,) ) ) -> ( RR \ { 0 } ) e. ( topGen ` ran (,) ) ) |
83 |
81 82
|
ax-mp |
|- ( RR \ { 0 } ) e. ( topGen ` ran (,) ) |
84 |
1 83
|
eqeltri |
|- D e. ( topGen ` ran (,) ) |
85 |
84
|
a1i |
|- ( T. -> D e. ( topGen ` ran (,) ) ) |
86 |
3 58 59 73 75 76 60 85
|
dvmptres |
|- ( T. -> ( RR _D ( x e. D |-> ( x ^ 2 ) ) ) = ( x e. D |-> ( 2 x. ( x ^ ( 2 - 1 ) ) ) ) ) |
87 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
88 |
87
|
oveq2i |
|- ( x ^ ( 2 - 1 ) ) = ( x ^ 1 ) |
89 |
8
|
exp1d |
|- ( x e. D -> ( x ^ 1 ) = x ) |
90 |
88 89
|
eqtrid |
|- ( x e. D -> ( x ^ ( 2 - 1 ) ) = x ) |
91 |
90
|
oveq2d |
|- ( x e. D -> ( 2 x. ( x ^ ( 2 - 1 ) ) ) = ( 2 x. x ) ) |
92 |
91
|
mpteq2ia |
|- ( x e. D |-> ( 2 x. ( x ^ ( 2 - 1 ) ) ) ) = ( x e. D |-> ( 2 x. x ) ) |
93 |
86 92
|
eqtrdi |
|- ( T. -> ( RR _D ( x e. D |-> ( x ^ 2 ) ) ) = ( x e. D |-> ( 2 x. x ) ) ) |
94 |
|
logf1o |
|- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
95 |
|
f1of |
|- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) |
96 |
94 95
|
mp1i |
|- ( T. -> log : ( CC \ { 0 } ) --> ran log ) |
97 |
|
snssi |
|- ( 0 e. ( -oo (,] 0 ) -> { 0 } C_ ( -oo (,] 0 ) ) |
98 |
48 97
|
ax-mp |
|- { 0 } C_ ( -oo (,] 0 ) |
99 |
|
sscon |
|- ( { 0 } C_ ( -oo (,] 0 ) -> ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) ) |
100 |
98 99
|
mp1i |
|- ( T. -> ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) ) |
101 |
96 100
|
feqresmpt |
|- ( T. -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) ) |
102 |
101
|
oveq2d |
|- ( T. -> ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) = ( CC _D ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) ) ) |
103 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
104 |
103
|
dvlog |
|- ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / y ) ) |
105 |
102 104
|
eqtr3di |
|- ( T. -> ( CC _D ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( log ` y ) ) ) = ( y e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / y ) ) ) |
106 |
|
fveq2 |
|- ( y = ( x ^ 2 ) -> ( log ` y ) = ( log ` ( x ^ 2 ) ) ) |
107 |
|
oveq2 |
|- ( y = ( x ^ 2 ) -> ( 1 / y ) = ( 1 / ( x ^ 2 ) ) ) |
108 |
3 18 40 41 54 55 93 105 106 107
|
dvmptco |
|- ( T. -> ( RR _D ( x e. D |-> ( log ` ( x ^ 2 ) ) ) ) = ( x e. D |-> ( ( 1 / ( x ^ 2 ) ) x. ( 2 x. x ) ) ) ) |
109 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
110 |
|
2ne0 |
|- 2 =/= 0 |
111 |
110
|
a1i |
|- ( T. -> 2 =/= 0 ) |
112 |
3 15 16 108 109 111
|
dvmptdivc |
|- ( T. -> ( RR _D ( x e. D |-> ( ( log ` ( x ^ 2 ) ) / 2 ) ) ) = ( x e. D |-> ( ( ( 1 / ( x ^ 2 ) ) x. ( 2 x. x ) ) / 2 ) ) ) |
113 |
112
|
mptru |
|- ( RR _D ( x e. D |-> ( ( log ` ( x ^ 2 ) ) / 2 ) ) ) = ( x e. D |-> ( ( ( 1 / ( x ^ 2 ) ) x. ( 2 x. x ) ) / 2 ) ) |
114 |
7
|
resqcld |
|- ( x e. D -> ( x ^ 2 ) e. RR ) |
115 |
114 13
|
rereccld |
|- ( x e. D -> ( 1 / ( x ^ 2 ) ) e. RR ) |
116 |
115
|
recnd |
|- ( x e. D -> ( 1 / ( x ^ 2 ) ) e. CC ) |
117 |
|
2cnd |
|- ( x e. D -> 2 e. CC ) |
118 |
116 117 8
|
mul12d |
|- ( x e. D -> ( ( 1 / ( x ^ 2 ) ) x. ( 2 x. x ) ) = ( 2 x. ( ( 1 / ( x ^ 2 ) ) x. x ) ) ) |
119 |
118
|
oveq1d |
|- ( x e. D -> ( ( ( 1 / ( x ^ 2 ) ) x. ( 2 x. x ) ) / 2 ) = ( ( 2 x. ( ( 1 / ( x ^ 2 ) ) x. x ) ) / 2 ) ) |
120 |
116 8
|
mulcld |
|- ( x e. D -> ( ( 1 / ( x ^ 2 ) ) x. x ) e. CC ) |
121 |
110
|
a1i |
|- ( x e. D -> 2 =/= 0 ) |
122 |
120 117 121
|
divcan3d |
|- ( x e. D -> ( ( 2 x. ( ( 1 / ( x ^ 2 ) ) x. x ) ) / 2 ) = ( ( 1 / ( x ^ 2 ) ) x. x ) ) |
123 |
8
|
sqvald |
|- ( x e. D -> ( x ^ 2 ) = ( x x. x ) ) |
124 |
123
|
oveq2d |
|- ( x e. D -> ( 1 / ( x ^ 2 ) ) = ( 1 / ( x x. x ) ) ) |
125 |
124
|
oveq1d |
|- ( x e. D -> ( ( 1 / ( x ^ 2 ) ) x. x ) = ( ( 1 / ( x x. x ) ) x. x ) ) |
126 |
8 8 10 10
|
recdiv2d |
|- ( x e. D -> ( ( 1 / x ) / x ) = ( 1 / ( x x. x ) ) ) |
127 |
126
|
oveq1d |
|- ( x e. D -> ( ( ( 1 / x ) / x ) x. x ) = ( ( 1 / ( x x. x ) ) x. x ) ) |
128 |
8 10
|
reccld |
|- ( x e. D -> ( 1 / x ) e. CC ) |
129 |
128 8 10
|
divcan1d |
|- ( x e. D -> ( ( ( 1 / x ) / x ) x. x ) = ( 1 / x ) ) |
130 |
125 127 129
|
3eqtr2d |
|- ( x e. D -> ( ( 1 / ( x ^ 2 ) ) x. x ) = ( 1 / x ) ) |
131 |
119 122 130
|
3eqtrd |
|- ( x e. D -> ( ( ( 1 / ( x ^ 2 ) ) x. ( 2 x. x ) ) / 2 ) = ( 1 / x ) ) |
132 |
131
|
mpteq2ia |
|- ( x e. D |-> ( ( ( 1 / ( x ^ 2 ) ) x. ( 2 x. x ) ) / 2 ) ) = ( x e. D |-> ( 1 / x ) ) |
133 |
113 132
|
eqtri |
|- ( RR _D ( x e. D |-> ( ( log ` ( x ^ 2 ) ) / 2 ) ) ) = ( x e. D |-> ( 1 / x ) ) |