Step |
Hyp |
Ref |
Expression |
1 |
|
redvabs.d |
|
2 |
|
reelprrecn |
|
3 |
2
|
a1i |
|
4 |
|
cnelprrecn |
|
5 |
4
|
a1i |
|
6 |
|
dfrp2 |
|
7 |
|
mnfxr |
|
8 |
7
|
a1i |
|
9 |
|
0xr |
|
10 |
9
|
a1i |
|
11 |
|
pnfxr |
|
12 |
11
|
a1i |
|
13 |
8 10 12
|
iocioodisjd |
|
14 |
13
|
mptru |
|
15 |
14
|
ineqcomi |
|
16 |
|
disjdif2 |
|
17 |
15 16
|
ax-mp |
|
18 |
6 17
|
eqtr4i |
|
19 |
|
ioosscn |
|
20 |
|
ssdif |
|
21 |
19 20
|
ax-mp |
|
22 |
18 21
|
eqsstri |
|
23 |
1
|
eleq2i |
|
24 |
|
eldifsn |
|
25 |
23 24
|
bitri |
|
26 |
25
|
simplbi |
|
27 |
26
|
recnd |
|
28 |
27
|
adantl |
|
29 |
25
|
simprbi |
|
30 |
29
|
adantl |
|
31 |
28 30
|
absrpcld |
|
32 |
22 31
|
sselid |
|
33 |
|
negex |
|
34 |
|
1ex |
|
35 |
33 34
|
ifex |
|
36 |
35
|
a1i |
|
37 |
|
eldifi |
|
38 |
37
|
adantl |
|
39 |
|
eldifn |
|
40 |
|
mnflt0 |
|
41 |
|
ubioc1 |
|
42 |
7 9 40 41
|
mp3an |
|
43 |
|
eleq1 |
|
44 |
42 43
|
mpbiri |
|
45 |
44
|
necon3bi |
|
46 |
39 45
|
syl |
|
47 |
46
|
adantl |
|
48 |
38 47
|
logcld |
|
49 |
|
ovexd |
|
50 |
1
|
redvmptabs |
|
51 |
50
|
a1i |
|
52 |
|
logf1o |
|
53 |
|
f1of |
|
54 |
52 53
|
ax-mp |
|
55 |
54
|
a1i |
|
56 |
55
|
feqmptd |
|
57 |
56
|
mptru |
|
58 |
57
|
reseq1i |
|
59 |
|
c0ex |
|
60 |
59
|
snss |
|
61 |
42 60
|
mpbi |
|
62 |
|
sscon |
|
63 |
|
resmpt |
|
64 |
61 62 63
|
mp2b |
|
65 |
58 64
|
eqtr2i |
|
66 |
65
|
oveq2i |
|
67 |
|
eqid |
|
68 |
67
|
dvlog |
|
69 |
66 68
|
eqtri |
|
70 |
69
|
a1i |
|
71 |
|
fveq2 |
|
72 |
|
oveq2 |
|
73 |
3 5 32 36 48 49 51 70 71 72
|
dvmptco |
|
74 |
73
|
mptru |
|
75 |
|
ovif2 |
|
76 |
|
simpll |
|
77 |
76
|
recnd |
|
78 |
77
|
abscld |
|
79 |
78
|
recnd |
|
80 |
|
simplr |
|
81 |
77 80
|
absne0d |
|
82 |
79 81
|
reccld |
|
83 |
|
neg1cn |
|
84 |
83
|
a1i |
|
85 |
82 84
|
mulcomd |
|
86 |
82
|
mulm1d |
|
87 |
|
1cnd |
|
88 |
87 79 81
|
divneg2d |
|
89 |
|
0red |
|
90 |
|
simpr |
|
91 |
76 89 90
|
ltled |
|
92 |
76 91
|
absnidd |
|
93 |
92
|
eqcomd |
|
94 |
77 93
|
negcon1ad |
|
95 |
94
|
oveq2d |
|
96 |
88 95
|
eqtrd |
|
97 |
85 86 96
|
3eqtrd |
|
98 |
25 97
|
sylanb |
|
99 |
|
recn |
|
100 |
99
|
abscld |
|
101 |
100
|
ad2antrr |
|
102 |
99
|
ad2antrr |
|
103 |
|
simplr |
|
104 |
102 103
|
absne0d |
|
105 |
101 104
|
rereccld |
|
106 |
105
|
recnd |
|
107 |
106
|
mulridd |
|
108 |
|
simpll |
|
109 |
|
0red |
|
110 |
|
simpl |
|
111 |
109 110
|
lenltd |
|
112 |
111
|
biimpar |
|
113 |
108 112
|
absidd |
|
114 |
113
|
oveq2d |
|
115 |
107 114
|
eqtrd |
|
116 |
25 115
|
sylanb |
|
117 |
98 116
|
ifeqda |
|
118 |
75 117
|
eqtrid |
|
119 |
118
|
mpteq2ia |
|
120 |
74 119
|
eqtri |
|