Step |
Hyp |
Ref |
Expression |
1 |
|
redvabs.d |
⊢ 𝐷 = ( ℝ ∖ { 0 } ) |
2 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
3 |
2
|
a1i |
⊢ ( ⊤ → ℝ ∈ { ℝ , ℂ } ) |
4 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
5 |
4
|
a1i |
⊢ ( ⊤ → ℂ ∈ { ℝ , ℂ } ) |
6 |
|
dfrp2 |
⊢ ℝ+ = ( 0 (,) +∞ ) |
7 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
8 |
7
|
a1i |
⊢ ( ⊤ → -∞ ∈ ℝ* ) |
9 |
|
0xr |
⊢ 0 ∈ ℝ* |
10 |
9
|
a1i |
⊢ ( ⊤ → 0 ∈ ℝ* ) |
11 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
12 |
11
|
a1i |
⊢ ( ⊤ → +∞ ∈ ℝ* ) |
13 |
8 10 12
|
iocioodisjd |
⊢ ( ⊤ → ( ( -∞ (,] 0 ) ∩ ( 0 (,) +∞ ) ) = ∅ ) |
14 |
13
|
mptru |
⊢ ( ( -∞ (,] 0 ) ∩ ( 0 (,) +∞ ) ) = ∅ |
15 |
14
|
ineqcomi |
⊢ ( ( 0 (,) +∞ ) ∩ ( -∞ (,] 0 ) ) = ∅ |
16 |
|
disjdif2 |
⊢ ( ( ( 0 (,) +∞ ) ∩ ( -∞ (,] 0 ) ) = ∅ → ( ( 0 (,) +∞ ) ∖ ( -∞ (,] 0 ) ) = ( 0 (,) +∞ ) ) |
17 |
15 16
|
ax-mp |
⊢ ( ( 0 (,) +∞ ) ∖ ( -∞ (,] 0 ) ) = ( 0 (,) +∞ ) |
18 |
6 17
|
eqtr4i |
⊢ ℝ+ = ( ( 0 (,) +∞ ) ∖ ( -∞ (,] 0 ) ) |
19 |
|
ioosscn |
⊢ ( 0 (,) +∞ ) ⊆ ℂ |
20 |
|
ssdif |
⊢ ( ( 0 (,) +∞ ) ⊆ ℂ → ( ( 0 (,) +∞ ) ∖ ( -∞ (,] 0 ) ) ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
21 |
19 20
|
ax-mp |
⊢ ( ( 0 (,) +∞ ) ∖ ( -∞ (,] 0 ) ) ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) |
22 |
18 21
|
eqsstri |
⊢ ℝ+ ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) |
23 |
1
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐷 ↔ 𝑥 ∈ ( ℝ ∖ { 0 } ) ) |
24 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ℝ ∖ { 0 } ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ) |
25 |
23 24
|
bitri |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ) |
26 |
25
|
simplbi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℝ ) |
27 |
26
|
recnd |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ ) |
28 |
27
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ ℂ ) |
29 |
25
|
simprbi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ≠ 0 ) |
30 |
29
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ≠ 0 ) |
31 |
28 30
|
absrpcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → ( abs ‘ 𝑥 ) ∈ ℝ+ ) |
32 |
22 31
|
sselid |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → ( abs ‘ 𝑥 ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
33 |
|
negex |
⊢ - 1 ∈ V |
34 |
|
1ex |
⊢ 1 ∈ V |
35 |
33 34
|
ifex |
⊢ if ( 𝑥 < 0 , - 1 , 1 ) ∈ V |
36 |
35
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → if ( 𝑥 < 0 , - 1 , 1 ) ∈ V ) |
37 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝑦 ∈ ℂ ) |
38 |
37
|
adantl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) → 𝑦 ∈ ℂ ) |
39 |
|
eldifn |
⊢ ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ¬ 𝑦 ∈ ( -∞ (,] 0 ) ) |
40 |
|
mnflt0 |
⊢ -∞ < 0 |
41 |
|
ubioc1 |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -∞ < 0 ) → 0 ∈ ( -∞ (,] 0 ) ) |
42 |
7 9 40 41
|
mp3an |
⊢ 0 ∈ ( -∞ (,] 0 ) |
43 |
|
eleq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 ∈ ( -∞ (,] 0 ) ↔ 0 ∈ ( -∞ (,] 0 ) ) ) |
44 |
42 43
|
mpbiri |
⊢ ( 𝑦 = 0 → 𝑦 ∈ ( -∞ (,] 0 ) ) |
45 |
44
|
necon3bi |
⊢ ( ¬ 𝑦 ∈ ( -∞ (,] 0 ) → 𝑦 ≠ 0 ) |
46 |
39 45
|
syl |
⊢ ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝑦 ≠ 0 ) |
47 |
46
|
adantl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) → 𝑦 ≠ 0 ) |
48 |
38 47
|
logcld |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) → ( log ‘ 𝑦 ) ∈ ℂ ) |
49 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) → ( 1 / 𝑦 ) ∈ V ) |
50 |
1
|
redvmptabs |
⊢ ( ℝ D ( 𝑥 ∈ 𝐷 ↦ ( abs ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 < 0 , - 1 , 1 ) ) |
51 |
50
|
a1i |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ 𝐷 ↦ ( abs ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 < 0 , - 1 , 1 ) ) ) |
52 |
|
logf1o |
⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |
53 |
|
f1of |
⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) |
54 |
52 53
|
ax-mp |
⊢ log : ( ℂ ∖ { 0 } ) ⟶ ran log |
55 |
54
|
a1i |
⊢ ( ⊤ → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) |
56 |
55
|
feqmptd |
⊢ ( ⊤ → log = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( log ‘ 𝑦 ) ) ) |
57 |
56
|
mptru |
⊢ log = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( log ‘ 𝑦 ) ) |
58 |
57
|
reseq1i |
⊢ ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( log ‘ 𝑦 ) ) ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
59 |
|
c0ex |
⊢ 0 ∈ V |
60 |
59
|
snss |
⊢ ( 0 ∈ ( -∞ (,] 0 ) ↔ { 0 } ⊆ ( -∞ (,] 0 ) ) |
61 |
42 60
|
mpbi |
⊢ { 0 } ⊆ ( -∞ (,] 0 ) |
62 |
|
sscon |
⊢ ( { 0 } ⊆ ( -∞ (,] 0 ) → ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ( ℂ ∖ { 0 } ) ) |
63 |
|
resmpt |
⊢ ( ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ( ℂ ∖ { 0 } ) → ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( log ‘ 𝑦 ) ) ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( log ‘ 𝑦 ) ) ) |
64 |
61 62 63
|
mp2b |
⊢ ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( log ‘ 𝑦 ) ) ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) = ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( log ‘ 𝑦 ) ) |
65 |
58 64
|
eqtr2i |
⊢ ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( log ‘ 𝑦 ) ) = ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
66 |
65
|
oveq2i |
⊢ ( ℂ D ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( log ‘ 𝑦 ) ) ) = ( ℂ D ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) |
67 |
|
eqid |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) |
68 |
67
|
dvlog |
⊢ ( ℂ D ( log ↾ ( ℂ ∖ ( -∞ (,] 0 ) ) ) ) = ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 1 / 𝑦 ) ) |
69 |
66 68
|
eqtri |
⊢ ( ℂ D ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( log ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 1 / 𝑦 ) ) |
70 |
69
|
a1i |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( log ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 1 / 𝑦 ) ) ) |
71 |
|
fveq2 |
⊢ ( 𝑦 = ( abs ‘ 𝑥 ) → ( log ‘ 𝑦 ) = ( log ‘ ( abs ‘ 𝑥 ) ) ) |
72 |
|
oveq2 |
⊢ ( 𝑦 = ( abs ‘ 𝑥 ) → ( 1 / 𝑦 ) = ( 1 / ( abs ‘ 𝑥 ) ) ) |
73 |
3 5 32 36 48 49 51 70 71 72
|
dvmptco |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ 𝐷 ↦ ( log ‘ ( abs ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 1 / ( abs ‘ 𝑥 ) ) · if ( 𝑥 < 0 , - 1 , 1 ) ) ) ) |
74 |
73
|
mptru |
⊢ ( ℝ D ( 𝑥 ∈ 𝐷 ↦ ( log ‘ ( abs ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 1 / ( abs ‘ 𝑥 ) ) · if ( 𝑥 < 0 , - 1 , 1 ) ) ) |
75 |
|
ovif2 |
⊢ ( ( 1 / ( abs ‘ 𝑥 ) ) · if ( 𝑥 < 0 , - 1 , 1 ) ) = if ( 𝑥 < 0 , ( ( 1 / ( abs ‘ 𝑥 ) ) · - 1 ) , ( ( 1 / ( abs ‘ 𝑥 ) ) · 1 ) ) |
76 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → 𝑥 ∈ ℝ ) |
77 |
76
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → 𝑥 ∈ ℂ ) |
78 |
77
|
abscld |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
79 |
78
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → ( abs ‘ 𝑥 ) ∈ ℂ ) |
80 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → 𝑥 ≠ 0 ) |
81 |
77 80
|
absne0d |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → ( abs ‘ 𝑥 ) ≠ 0 ) |
82 |
79 81
|
reccld |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → ( 1 / ( abs ‘ 𝑥 ) ) ∈ ℂ ) |
83 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
84 |
83
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → - 1 ∈ ℂ ) |
85 |
82 84
|
mulcomd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → ( ( 1 / ( abs ‘ 𝑥 ) ) · - 1 ) = ( - 1 · ( 1 / ( abs ‘ 𝑥 ) ) ) ) |
86 |
82
|
mulm1d |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → ( - 1 · ( 1 / ( abs ‘ 𝑥 ) ) ) = - ( 1 / ( abs ‘ 𝑥 ) ) ) |
87 |
|
1cnd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → 1 ∈ ℂ ) |
88 |
87 79 81
|
divneg2d |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → - ( 1 / ( abs ‘ 𝑥 ) ) = ( 1 / - ( abs ‘ 𝑥 ) ) ) |
89 |
|
0red |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → 0 ∈ ℝ ) |
90 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → 𝑥 < 0 ) |
91 |
76 89 90
|
ltled |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → 𝑥 ≤ 0 ) |
92 |
76 91
|
absnidd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → ( abs ‘ 𝑥 ) = - 𝑥 ) |
93 |
92
|
eqcomd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → - 𝑥 = ( abs ‘ 𝑥 ) ) |
94 |
77 93
|
negcon1ad |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → - ( abs ‘ 𝑥 ) = 𝑥 ) |
95 |
94
|
oveq2d |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → ( 1 / - ( abs ‘ 𝑥 ) ) = ( 1 / 𝑥 ) ) |
96 |
88 95
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → - ( 1 / ( abs ‘ 𝑥 ) ) = ( 1 / 𝑥 ) ) |
97 |
85 86 96
|
3eqtrd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ 𝑥 < 0 ) → ( ( 1 / ( abs ‘ 𝑥 ) ) · - 1 ) = ( 1 / 𝑥 ) ) |
98 |
25 97
|
sylanb |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑥 < 0 ) → ( ( 1 / ( abs ‘ 𝑥 ) ) · - 1 ) = ( 1 / 𝑥 ) ) |
99 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
100 |
99
|
abscld |
⊢ ( 𝑥 ∈ ℝ → ( abs ‘ 𝑥 ) ∈ ℝ ) |
101 |
100
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ ¬ 𝑥 < 0 ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
102 |
99
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ ¬ 𝑥 < 0 ) → 𝑥 ∈ ℂ ) |
103 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ ¬ 𝑥 < 0 ) → 𝑥 ≠ 0 ) |
104 |
102 103
|
absne0d |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ ¬ 𝑥 < 0 ) → ( abs ‘ 𝑥 ) ≠ 0 ) |
105 |
101 104
|
rereccld |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ ¬ 𝑥 < 0 ) → ( 1 / ( abs ‘ 𝑥 ) ) ∈ ℝ ) |
106 |
105
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ ¬ 𝑥 < 0 ) → ( 1 / ( abs ‘ 𝑥 ) ) ∈ ℂ ) |
107 |
106
|
mulridd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ ¬ 𝑥 < 0 ) → ( ( 1 / ( abs ‘ 𝑥 ) ) · 1 ) = ( 1 / ( abs ‘ 𝑥 ) ) ) |
108 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ ¬ 𝑥 < 0 ) → 𝑥 ∈ ℝ ) |
109 |
|
0red |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) → 0 ∈ ℝ ) |
110 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ ℝ ) |
111 |
109 110
|
lenltd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) → ( 0 ≤ 𝑥 ↔ ¬ 𝑥 < 0 ) ) |
112 |
111
|
biimpar |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ ¬ 𝑥 < 0 ) → 0 ≤ 𝑥 ) |
113 |
108 112
|
absidd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ ¬ 𝑥 < 0 ) → ( abs ‘ 𝑥 ) = 𝑥 ) |
114 |
113
|
oveq2d |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ ¬ 𝑥 < 0 ) → ( 1 / ( abs ‘ 𝑥 ) ) = ( 1 / 𝑥 ) ) |
115 |
107 114
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) ∧ ¬ 𝑥 < 0 ) → ( ( 1 / ( abs ‘ 𝑥 ) ) · 1 ) = ( 1 / 𝑥 ) ) |
116 |
25 115
|
sylanb |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ ¬ 𝑥 < 0 ) → ( ( 1 / ( abs ‘ 𝑥 ) ) · 1 ) = ( 1 / 𝑥 ) ) |
117 |
98 116
|
ifeqda |
⊢ ( 𝑥 ∈ 𝐷 → if ( 𝑥 < 0 , ( ( 1 / ( abs ‘ 𝑥 ) ) · - 1 ) , ( ( 1 / ( abs ‘ 𝑥 ) ) · 1 ) ) = ( 1 / 𝑥 ) ) |
118 |
75 117
|
eqtrid |
⊢ ( 𝑥 ∈ 𝐷 → ( ( 1 / ( abs ‘ 𝑥 ) ) · if ( 𝑥 < 0 , - 1 , 1 ) ) = ( 1 / 𝑥 ) ) |
119 |
118
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ( 1 / ( abs ‘ 𝑥 ) ) · if ( 𝑥 < 0 , - 1 , 1 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 1 / 𝑥 ) ) |
120 |
74 119
|
eqtri |
⊢ ( ℝ D ( 𝑥 ∈ 𝐷 ↦ ( log ‘ ( abs ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 1 / 𝑥 ) ) |