| Step |
Hyp |
Ref |
Expression |
| 1 |
|
readvcot.d |
⊢ 𝐷 = { 𝑦 ∈ ℝ ∣ ( sin ‘ 𝑦 ) ≠ 0 } |
| 2 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 3 |
2
|
a1i |
⊢ ( ⊤ → ℝ ∈ { ℝ , ℂ } ) |
| 4 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( sin ‘ 𝑦 ) = ( sin ‘ 𝑥 ) ) |
| 5 |
4
|
neeq1d |
⊢ ( 𝑦 = 𝑥 → ( ( sin ‘ 𝑦 ) ≠ 0 ↔ ( sin ‘ 𝑥 ) ≠ 0 ) ) |
| 6 |
5 1
|
elrab2 |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ℝ ∧ ( sin ‘ 𝑥 ) ≠ 0 ) ) |
| 7 |
|
resincl |
⊢ ( 𝑥 ∈ ℝ → ( sin ‘ 𝑥 ) ∈ ℝ ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( sin ‘ 𝑥 ) ≠ 0 ) → ( sin ‘ 𝑥 ) ∈ ℝ ) |
| 9 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( sin ‘ 𝑥 ) ≠ 0 ) → ( sin ‘ 𝑥 ) ≠ 0 ) |
| 10 |
8 9
|
eldifsnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( sin ‘ 𝑥 ) ≠ 0 ) → ( sin ‘ 𝑥 ) ∈ ( ℝ ∖ { 0 } ) ) |
| 11 |
6 10
|
sylbi |
⊢ ( 𝑥 ∈ 𝐷 → ( sin ‘ 𝑥 ) ∈ ( ℝ ∖ { 0 } ) ) |
| 12 |
11
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → ( sin ‘ 𝑥 ) ∈ ( ℝ ∖ { 0 } ) ) |
| 13 |
|
fvexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐷 ) → ( cos ‘ 𝑥 ) ∈ V ) |
| 14 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ℝ ∖ { 0 } ) → 𝑧 ∈ ℝ ) |
| 15 |
14
|
adantl |
⊢ ( ( ⊤ ∧ 𝑧 ∈ ( ℝ ∖ { 0 } ) ) → 𝑧 ∈ ℝ ) |
| 16 |
15
|
recnd |
⊢ ( ( ⊤ ∧ 𝑧 ∈ ( ℝ ∖ { 0 } ) ) → 𝑧 ∈ ℂ ) |
| 17 |
16
|
abscld |
⊢ ( ( ⊤ ∧ 𝑧 ∈ ( ℝ ∖ { 0 } ) ) → ( abs ‘ 𝑧 ) ∈ ℝ ) |
| 18 |
17
|
recnd |
⊢ ( ( ⊤ ∧ 𝑧 ∈ ( ℝ ∖ { 0 } ) ) → ( abs ‘ 𝑧 ) ∈ ℂ ) |
| 19 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( ℝ ∖ { 0 } ) → 𝑧 ≠ 0 ) |
| 20 |
19
|
adantl |
⊢ ( ( ⊤ ∧ 𝑧 ∈ ( ℝ ∖ { 0 } ) ) → 𝑧 ≠ 0 ) |
| 21 |
16 20
|
absne0d |
⊢ ( ( ⊤ ∧ 𝑧 ∈ ( ℝ ∖ { 0 } ) ) → ( abs ‘ 𝑧 ) ≠ 0 ) |
| 22 |
18 21
|
logcld |
⊢ ( ( ⊤ ∧ 𝑧 ∈ ( ℝ ∖ { 0 } ) ) → ( log ‘ ( abs ‘ 𝑧 ) ) ∈ ℂ ) |
| 23 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑧 ∈ ( ℝ ∖ { 0 } ) ) → ( 1 / 𝑧 ) ∈ V ) |
| 24 |
7
|
recnd |
⊢ ( 𝑥 ∈ ℝ → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 25 |
24
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 26 |
|
fvexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( cos ‘ 𝑥 ) ∈ V ) |
| 27 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 28 |
|
cnopn |
⊢ ℂ ∈ ( TopOpen ‘ ℂfld ) |
| 29 |
28
|
a1i |
⊢ ( ⊤ → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
| 30 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 31 |
|
dfss2 |
⊢ ( ℝ ⊆ ℂ ↔ ( ℝ ∩ ℂ ) = ℝ ) |
| 32 |
30 31
|
mpbi |
⊢ ( ℝ ∩ ℂ ) = ℝ |
| 33 |
32
|
a1i |
⊢ ( ⊤ → ( ℝ ∩ ℂ ) = ℝ ) |
| 34 |
|
sincl |
⊢ ( 𝑥 ∈ ℂ → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 35 |
34
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 36 |
|
fvexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( cos ‘ 𝑥 ) ∈ V ) |
| 37 |
|
dvsin |
⊢ ( ℂ D sin ) = cos |
| 38 |
|
sinf |
⊢ sin : ℂ ⟶ ℂ |
| 39 |
38
|
a1i |
⊢ ( ⊤ → sin : ℂ ⟶ ℂ ) |
| 40 |
39
|
feqmptd |
⊢ ( ⊤ → sin = ( 𝑥 ∈ ℂ ↦ ( sin ‘ 𝑥 ) ) ) |
| 41 |
40
|
oveq2d |
⊢ ( ⊤ → ( ℂ D sin ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( sin ‘ 𝑥 ) ) ) ) |
| 42 |
|
cosf |
⊢ cos : ℂ ⟶ ℂ |
| 43 |
42
|
a1i |
⊢ ( ⊤ → cos : ℂ ⟶ ℂ ) |
| 44 |
43
|
feqmptd |
⊢ ( ⊤ → cos = ( 𝑥 ∈ ℂ ↦ ( cos ‘ 𝑥 ) ) ) |
| 45 |
37 41 44
|
3eqtr3a |
⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( sin ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( cos ‘ 𝑥 ) ) ) |
| 46 |
27 3 29 33 35 36 45
|
dvmptres3 |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ ↦ ( sin ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( cos ‘ 𝑥 ) ) ) |
| 47 |
1
|
ssrab3 |
⊢ 𝐷 ⊆ ℝ |
| 48 |
47
|
a1i |
⊢ ( ⊤ → 𝐷 ⊆ ℝ ) |
| 49 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 50 |
1
|
resuppsinopn |
⊢ 𝐷 ∈ ( topGen ‘ ran (,) ) |
| 51 |
50
|
a1i |
⊢ ( ⊤ → 𝐷 ∈ ( topGen ‘ ran (,) ) ) |
| 52 |
3 25 26 46 48 49 27 51
|
dvmptres |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ 𝐷 ↦ ( sin ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( cos ‘ 𝑥 ) ) ) |
| 53 |
|
eqid |
⊢ ( ℝ ∖ { 0 } ) = ( ℝ ∖ { 0 } ) |
| 54 |
53
|
readvrec |
⊢ ( ℝ D ( 𝑧 ∈ ( ℝ ∖ { 0 } ) ↦ ( log ‘ ( abs ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ ( ℝ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) |
| 55 |
54
|
a1i |
⊢ ( ⊤ → ( ℝ D ( 𝑧 ∈ ( ℝ ∖ { 0 } ) ↦ ( log ‘ ( abs ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ ( ℝ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ) |
| 56 |
|
2fveq3 |
⊢ ( 𝑧 = ( sin ‘ 𝑥 ) → ( log ‘ ( abs ‘ 𝑧 ) ) = ( log ‘ ( abs ‘ ( sin ‘ 𝑥 ) ) ) ) |
| 57 |
|
oveq2 |
⊢ ( 𝑧 = ( sin ‘ 𝑥 ) → ( 1 / 𝑧 ) = ( 1 / ( sin ‘ 𝑥 ) ) ) |
| 58 |
3 3 12 13 22 23 52 55 56 57
|
dvmptco |
⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ 𝐷 ↦ ( log ‘ ( abs ‘ ( sin ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 1 / ( sin ‘ 𝑥 ) ) · ( cos ‘ 𝑥 ) ) ) ) |
| 59 |
58
|
mptru |
⊢ ( ℝ D ( 𝑥 ∈ 𝐷 ↦ ( log ‘ ( abs ‘ ( sin ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 1 / ( sin ‘ 𝑥 ) ) · ( cos ‘ 𝑥 ) ) ) |
| 60 |
6
|
simplbi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℝ ) |
| 61 |
60
|
recoscld |
⊢ ( 𝑥 ∈ 𝐷 → ( cos ‘ 𝑥 ) ∈ ℝ ) |
| 62 |
61
|
recnd |
⊢ ( 𝑥 ∈ 𝐷 → ( cos ‘ 𝑥 ) ∈ ℂ ) |
| 63 |
6 8
|
sylbi |
⊢ ( 𝑥 ∈ 𝐷 → ( sin ‘ 𝑥 ) ∈ ℝ ) |
| 64 |
63
|
recnd |
⊢ ( 𝑥 ∈ 𝐷 → ( sin ‘ 𝑥 ) ∈ ℂ ) |
| 65 |
6 9
|
sylbi |
⊢ ( 𝑥 ∈ 𝐷 → ( sin ‘ 𝑥 ) ≠ 0 ) |
| 66 |
62 64 65
|
divrec2d |
⊢ ( 𝑥 ∈ 𝐷 → ( ( cos ‘ 𝑥 ) / ( sin ‘ 𝑥 ) ) = ( ( 1 / ( sin ‘ 𝑥 ) ) · ( cos ‘ 𝑥 ) ) ) |
| 67 |
66
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ( cos ‘ 𝑥 ) / ( sin ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 1 / ( sin ‘ 𝑥 ) ) · ( cos ‘ 𝑥 ) ) ) |
| 68 |
59 67
|
eqtr4i |
⊢ ( ℝ D ( 𝑥 ∈ 𝐷 ↦ ( log ‘ ( abs ‘ ( sin ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ( cos ‘ 𝑥 ) / ( sin ‘ 𝑥 ) ) ) |