Step |
Hyp |
Ref |
Expression |
1 |
|
rnghmsubcsetc.c |
⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) |
2 |
|
rnghmsubcsetc.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
rnghmsubcsetc.b |
⊢ ( 𝜑 → 𝐵 = ( Rng ∩ 𝑈 ) ) |
4 |
|
rnghmsubcsetc.h |
⊢ ( 𝜑 → 𝐻 = ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) ) |
5 |
3
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Rng ∩ 𝑈 ) ) ) |
6 |
|
elin |
⊢ ( 𝑥 ∈ ( Rng ∩ 𝑈 ) ↔ ( 𝑥 ∈ Rng ∧ 𝑥 ∈ 𝑈 ) ) |
7 |
6
|
simplbi |
⊢ ( 𝑥 ∈ ( Rng ∩ 𝑈 ) → 𝑥 ∈ Rng ) |
8 |
5 7
|
syl6bi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ Rng ) ) |
9 |
8
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ Rng ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) |
11 |
10
|
idrnghm |
⊢ ( 𝑥 ∈ Rng → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RngHomo 𝑥 ) ) |
12 |
9 11
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RngHomo 𝑥 ) ) |
13 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑈 ∈ 𝑉 ) |
15 |
6
|
simprbi |
⊢ ( 𝑥 ∈ ( Rng ∩ 𝑈 ) → 𝑥 ∈ 𝑈 ) |
16 |
5 15
|
syl6bi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈 ) ) |
17 |
16
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
18 |
1 13 14 17
|
estrcid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) = ( I ↾ ( Base ‘ 𝑥 ) ) ) |
19 |
4
|
oveqdr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) 𝑥 ) ) |
20 |
|
eqid |
⊢ ( RngCat ‘ 𝑈 ) = ( RngCat ‘ 𝑈 ) |
21 |
|
eqid |
⊢ ( Base ‘ ( RngCat ‘ 𝑈 ) ) = ( Base ‘ ( RngCat ‘ 𝑈 ) ) |
22 |
|
eqid |
⊢ ( Hom ‘ ( RngCat ‘ 𝑈 ) ) = ( Hom ‘ ( RngCat ‘ 𝑈 ) ) |
23 |
20 21 2 22
|
rngchomfval |
⊢ ( 𝜑 → ( Hom ‘ ( RngCat ‘ 𝑈 ) ) = ( RngHomo ↾ ( ( Base ‘ ( RngCat ‘ 𝑈 ) ) × ( Base ‘ ( RngCat ‘ 𝑈 ) ) ) ) ) |
24 |
20 21 2
|
rngcbas |
⊢ ( 𝜑 → ( Base ‘ ( RngCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Rng ) ) |
25 |
|
incom |
⊢ ( Rng ∩ 𝑈 ) = ( 𝑈 ∩ Rng ) |
26 |
3 25
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) |
27 |
26
|
eqcomd |
⊢ ( 𝜑 → ( 𝑈 ∩ Rng ) = 𝐵 ) |
28 |
24 27
|
eqtrd |
⊢ ( 𝜑 → ( Base ‘ ( RngCat ‘ 𝑈 ) ) = 𝐵 ) |
29 |
28
|
sqxpeqd |
⊢ ( 𝜑 → ( ( Base ‘ ( RngCat ‘ 𝑈 ) ) × ( Base ‘ ( RngCat ‘ 𝑈 ) ) ) = ( 𝐵 × 𝐵 ) ) |
30 |
29
|
reseq2d |
⊢ ( 𝜑 → ( RngHomo ↾ ( ( Base ‘ ( RngCat ‘ 𝑈 ) ) × ( Base ‘ ( RngCat ‘ 𝑈 ) ) ) ) = ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) ) |
31 |
23 30
|
eqtrd |
⊢ ( 𝜑 → ( Hom ‘ ( RngCat ‘ 𝑈 ) ) = ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( Hom ‘ ( RngCat ‘ 𝑈 ) ) = ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) ) |
33 |
32
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) = ( Hom ‘ ( RngCat ‘ 𝑈 ) ) ) |
34 |
33
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) 𝑥 ) = ( 𝑥 ( Hom ‘ ( RngCat ‘ 𝑈 ) ) 𝑥 ) ) |
35 |
26
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( 𝑈 ∩ Rng ) ) ) |
36 |
35
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( 𝑈 ∩ Rng ) ) |
37 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( Base ‘ ( RngCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Rng ) ) |
38 |
36 37
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( Base ‘ ( RngCat ‘ 𝑈 ) ) ) |
39 |
20 21 14 22 38 38
|
rngchom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( Hom ‘ ( RngCat ‘ 𝑈 ) ) 𝑥 ) = ( 𝑥 RngHomo 𝑥 ) ) |
40 |
19 34 39
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 RngHomo 𝑥 ) ) |
41 |
12 18 40
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ) |