Metamath Proof Explorer


Theorem rnghmsubcsetclem1

Description: Lemma 1 for rnghmsubcsetc . (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses rnghmsubcsetc.c C=ExtStrCatU
rnghmsubcsetc.u φUV
rnghmsubcsetc.b φB=RngU
rnghmsubcsetc.h φH=RngHomB×B
Assertion rnghmsubcsetclem1 φxBIdCxxHx

Proof

Step Hyp Ref Expression
1 rnghmsubcsetc.c C=ExtStrCatU
2 rnghmsubcsetc.u φUV
3 rnghmsubcsetc.b φB=RngU
4 rnghmsubcsetc.h φH=RngHomB×B
5 3 eleq2d φxBxRngU
6 elin xRngUxRngxU
7 6 simplbi xRngUxRng
8 5 7 syl6bi φxBxRng
9 8 imp φxBxRng
10 eqid Basex=Basex
11 10 idrnghm xRngIBasexxRngHomx
12 9 11 syl φxBIBasexxRngHomx
13 eqid IdC=IdC
14 2 adantr φxBUV
15 6 simprbi xRngUxU
16 5 15 syl6bi φxBxU
17 16 imp φxBxU
18 1 13 14 17 estrcid φxBIdCx=IBasex
19 4 oveqdr φxBxHx=xRngHomB×Bx
20 eqid RngCatU=RngCatU
21 eqid BaseRngCatU=BaseRngCatU
22 eqid HomRngCatU=HomRngCatU
23 20 21 2 22 rngchomfval φHomRngCatU=RngHomBaseRngCatU×BaseRngCatU
24 20 21 2 rngcbas φBaseRngCatU=URng
25 incom RngU=URng
26 3 25 eqtrdi φB=URng
27 26 eqcomd φURng=B
28 24 27 eqtrd φBaseRngCatU=B
29 28 sqxpeqd φBaseRngCatU×BaseRngCatU=B×B
30 29 reseq2d φRngHomBaseRngCatU×BaseRngCatU=RngHomB×B
31 23 30 eqtrd φHomRngCatU=RngHomB×B
32 31 adantr φxBHomRngCatU=RngHomB×B
33 32 eqcomd φxBRngHomB×B=HomRngCatU
34 33 oveqd φxBxRngHomB×Bx=xHomRngCatUx
35 26 eleq2d φxBxURng
36 35 biimpa φxBxURng
37 24 adantr φxBBaseRngCatU=URng
38 36 37 eleqtrrd φxBxBaseRngCatU
39 20 21 14 22 38 38 rngchom φxBxHomRngCatUx=xRngHomx
40 19 34 39 3eqtrd φxBxHx=xRngHomx
41 12 18 40 3eltr4d φxBIdCxxHx