| Step | Hyp | Ref | Expression | 
						
							| 1 |  | spllen.s | ⊢ ( 𝜑  →  𝑆  ∈  Word  𝐴 ) | 
						
							| 2 |  | spllen.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 0 ... 𝑇 ) ) | 
						
							| 3 |  | spllen.t | ⊢ ( 𝜑  →  𝑇  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 4 |  | spllen.r | ⊢ ( 𝜑  →  𝑅  ∈  Word  𝐴 ) | 
						
							| 5 |  | splval | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  ( 𝐹  ∈  ( 0 ... 𝑇 )  ∧  𝑇  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) )  ∧  𝑅  ∈  Word  𝐴 ) )  →  ( 𝑆  splice  〈 𝐹 ,  𝑇 ,  𝑅 〉 )  =  ( ( ( 𝑆  prefix  𝐹 )  ++  𝑅 )  ++  ( 𝑆  substr  〈 𝑇 ,  ( ♯ ‘ 𝑆 ) 〉 ) ) ) | 
						
							| 6 | 1 2 3 4 5 | syl13anc | ⊢ ( 𝜑  →  ( 𝑆  splice  〈 𝐹 ,  𝑇 ,  𝑅 〉 )  =  ( ( ( 𝑆  prefix  𝐹 )  ++  𝑅 )  ++  ( 𝑆  substr  〈 𝑇 ,  ( ♯ ‘ 𝑆 ) 〉 ) ) ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑆  splice  〈 𝐹 ,  𝑇 ,  𝑅 〉 ) )  =  ( ♯ ‘ ( ( ( 𝑆  prefix  𝐹 )  ++  𝑅 )  ++  ( 𝑆  substr  〈 𝑇 ,  ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) | 
						
							| 8 |  | pfxcl | ⊢ ( 𝑆  ∈  Word  𝐴  →  ( 𝑆  prefix  𝐹 )  ∈  Word  𝐴 ) | 
						
							| 9 | 1 8 | syl | ⊢ ( 𝜑  →  ( 𝑆  prefix  𝐹 )  ∈  Word  𝐴 ) | 
						
							| 10 |  | ccatcl | ⊢ ( ( ( 𝑆  prefix  𝐹 )  ∈  Word  𝐴  ∧  𝑅  ∈  Word  𝐴 )  →  ( ( 𝑆  prefix  𝐹 )  ++  𝑅 )  ∈  Word  𝐴 ) | 
						
							| 11 | 9 4 10 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑆  prefix  𝐹 )  ++  𝑅 )  ∈  Word  𝐴 ) | 
						
							| 12 |  | swrdcl | ⊢ ( 𝑆  ∈  Word  𝐴  →  ( 𝑆  substr  〈 𝑇 ,  ( ♯ ‘ 𝑆 ) 〉 )  ∈  Word  𝐴 ) | 
						
							| 13 | 1 12 | syl | ⊢ ( 𝜑  →  ( 𝑆  substr  〈 𝑇 ,  ( ♯ ‘ 𝑆 ) 〉 )  ∈  Word  𝐴 ) | 
						
							| 14 |  | ccatlen | ⊢ ( ( ( ( 𝑆  prefix  𝐹 )  ++  𝑅 )  ∈  Word  𝐴  ∧  ( 𝑆  substr  〈 𝑇 ,  ( ♯ ‘ 𝑆 ) 〉 )  ∈  Word  𝐴 )  →  ( ♯ ‘ ( ( ( 𝑆  prefix  𝐹 )  ++  𝑅 )  ++  ( 𝑆  substr  〈 𝑇 ,  ( ♯ ‘ 𝑆 ) 〉 ) ) )  =  ( ( ♯ ‘ ( ( 𝑆  prefix  𝐹 )  ++  𝑅 ) )  +  ( ♯ ‘ ( 𝑆  substr  〈 𝑇 ,  ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) | 
						
							| 15 | 11 13 14 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( ( 𝑆  prefix  𝐹 )  ++  𝑅 )  ++  ( 𝑆  substr  〈 𝑇 ,  ( ♯ ‘ 𝑆 ) 〉 ) ) )  =  ( ( ♯ ‘ ( ( 𝑆  prefix  𝐹 )  ++  𝑅 ) )  +  ( ♯ ‘ ( 𝑆  substr  〈 𝑇 ,  ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) | 
						
							| 16 |  | lencl | ⊢ ( 𝑅  ∈  Word  𝐴  →  ( ♯ ‘ 𝑅 )  ∈  ℕ0 ) | 
						
							| 17 | 16 | nn0cnd | ⊢ ( 𝑅  ∈  Word  𝐴  →  ( ♯ ‘ 𝑅 )  ∈  ℂ ) | 
						
							| 18 | 4 17 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑅 )  ∈  ℂ ) | 
						
							| 19 |  | elfzelz | ⊢ ( 𝐹  ∈  ( 0 ... 𝑇 )  →  𝐹  ∈  ℤ ) | 
						
							| 20 | 19 | zcnd | ⊢ ( 𝐹  ∈  ( 0 ... 𝑇 )  →  𝐹  ∈  ℂ ) | 
						
							| 21 | 2 20 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ℂ ) | 
						
							| 22 | 18 21 | addcld | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑅 )  +  𝐹 )  ∈  ℂ ) | 
						
							| 23 |  | elfzel2 | ⊢ ( 𝑇  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) )  →  ( ♯ ‘ 𝑆 )  ∈  ℤ ) | 
						
							| 24 | 23 | zcnd | ⊢ ( 𝑇  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) )  →  ( ♯ ‘ 𝑆 )  ∈  ℂ ) | 
						
							| 25 | 3 24 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑆 )  ∈  ℂ ) | 
						
							| 26 |  | elfzelz | ⊢ ( 𝑇  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) )  →  𝑇  ∈  ℤ ) | 
						
							| 27 | 26 | zcnd | ⊢ ( 𝑇  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) )  →  𝑇  ∈  ℂ ) | 
						
							| 28 | 3 27 | syl | ⊢ ( 𝜑  →  𝑇  ∈  ℂ ) | 
						
							| 29 | 22 25 28 | addsub12d | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝑅 )  +  𝐹 )  +  ( ( ♯ ‘ 𝑆 )  −  𝑇 ) )  =  ( ( ♯ ‘ 𝑆 )  +  ( ( ( ♯ ‘ 𝑅 )  +  𝐹 )  −  𝑇 ) ) ) | 
						
							| 30 |  | ccatlen | ⊢ ( ( ( 𝑆  prefix  𝐹 )  ∈  Word  𝐴  ∧  𝑅  ∈  Word  𝐴 )  →  ( ♯ ‘ ( ( 𝑆  prefix  𝐹 )  ++  𝑅 ) )  =  ( ( ♯ ‘ ( 𝑆  prefix  𝐹 ) )  +  ( ♯ ‘ 𝑅 ) ) ) | 
						
							| 31 | 9 4 30 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑆  prefix  𝐹 )  ++  𝑅 ) )  =  ( ( ♯ ‘ ( 𝑆  prefix  𝐹 ) )  +  ( ♯ ‘ 𝑅 ) ) ) | 
						
							| 32 |  | elfzuz | ⊢ ( 𝐹  ∈  ( 0 ... 𝑇 )  →  𝐹  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 33 | 2 32 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 34 |  | elfzuz3 | ⊢ ( 𝑇  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) )  →  ( ♯ ‘ 𝑆 )  ∈  ( ℤ≥ ‘ 𝑇 ) ) | 
						
							| 35 | 3 34 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑆 )  ∈  ( ℤ≥ ‘ 𝑇 ) ) | 
						
							| 36 |  | elfzuz3 | ⊢ ( 𝐹  ∈  ( 0 ... 𝑇 )  →  𝑇  ∈  ( ℤ≥ ‘ 𝐹 ) ) | 
						
							| 37 | 2 36 | syl | ⊢ ( 𝜑  →  𝑇  ∈  ( ℤ≥ ‘ 𝐹 ) ) | 
						
							| 38 |  | uztrn | ⊢ ( ( ( ♯ ‘ 𝑆 )  ∈  ( ℤ≥ ‘ 𝑇 )  ∧  𝑇  ∈  ( ℤ≥ ‘ 𝐹 ) )  →  ( ♯ ‘ 𝑆 )  ∈  ( ℤ≥ ‘ 𝐹 ) ) | 
						
							| 39 | 35 37 38 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑆 )  ∈  ( ℤ≥ ‘ 𝐹 ) ) | 
						
							| 40 |  | elfzuzb | ⊢ ( 𝐹  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) )  ↔  ( 𝐹  ∈  ( ℤ≥ ‘ 0 )  ∧  ( ♯ ‘ 𝑆 )  ∈  ( ℤ≥ ‘ 𝐹 ) ) ) | 
						
							| 41 | 33 39 40 | sylanbrc | ⊢ ( 𝜑  →  𝐹  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 42 |  | pfxlen | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  𝐹  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) )  →  ( ♯ ‘ ( 𝑆  prefix  𝐹 ) )  =  𝐹 ) | 
						
							| 43 | 1 41 42 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑆  prefix  𝐹 ) )  =  𝐹 ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑆  prefix  𝐹 ) )  +  ( ♯ ‘ 𝑅 ) )  =  ( 𝐹  +  ( ♯ ‘ 𝑅 ) ) ) | 
						
							| 45 | 21 18 | addcomd | ⊢ ( 𝜑  →  ( 𝐹  +  ( ♯ ‘ 𝑅 ) )  =  ( ( ♯ ‘ 𝑅 )  +  𝐹 ) ) | 
						
							| 46 | 31 44 45 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑆  prefix  𝐹 )  ++  𝑅 ) )  =  ( ( ♯ ‘ 𝑅 )  +  𝐹 ) ) | 
						
							| 47 |  | elfzuz2 | ⊢ ( 𝑇  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) )  →  ( ♯ ‘ 𝑆 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 48 |  | eluzfz2 | ⊢ ( ( ♯ ‘ 𝑆 )  ∈  ( ℤ≥ ‘ 0 )  →  ( ♯ ‘ 𝑆 )  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 49 | 3 47 48 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑆 )  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 50 |  | swrdlen | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  𝑇  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) )  ∧  ( ♯ ‘ 𝑆 )  ∈  ( 0 ... ( ♯ ‘ 𝑆 ) ) )  →  ( ♯ ‘ ( 𝑆  substr  〈 𝑇 ,  ( ♯ ‘ 𝑆 ) 〉 ) )  =  ( ( ♯ ‘ 𝑆 )  −  𝑇 ) ) | 
						
							| 51 | 1 3 49 50 | syl3anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑆  substr  〈 𝑇 ,  ( ♯ ‘ 𝑆 ) 〉 ) )  =  ( ( ♯ ‘ 𝑆 )  −  𝑇 ) ) | 
						
							| 52 | 46 51 | oveq12d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( ( 𝑆  prefix  𝐹 )  ++  𝑅 ) )  +  ( ♯ ‘ ( 𝑆  substr  〈 𝑇 ,  ( ♯ ‘ 𝑆 ) 〉 ) ) )  =  ( ( ( ♯ ‘ 𝑅 )  +  𝐹 )  +  ( ( ♯ ‘ 𝑆 )  −  𝑇 ) ) ) | 
						
							| 53 | 18 28 21 | subsub3d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑅 )  −  ( 𝑇  −  𝐹 ) )  =  ( ( ( ♯ ‘ 𝑅 )  +  𝐹 )  −  𝑇 ) ) | 
						
							| 54 | 53 | oveq2d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑆 )  +  ( ( ♯ ‘ 𝑅 )  −  ( 𝑇  −  𝐹 ) ) )  =  ( ( ♯ ‘ 𝑆 )  +  ( ( ( ♯ ‘ 𝑅 )  +  𝐹 )  −  𝑇 ) ) ) | 
						
							| 55 | 29 52 54 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( ( 𝑆  prefix  𝐹 )  ++  𝑅 ) )  +  ( ♯ ‘ ( 𝑆  substr  〈 𝑇 ,  ( ♯ ‘ 𝑆 ) 〉 ) ) )  =  ( ( ♯ ‘ 𝑆 )  +  ( ( ♯ ‘ 𝑅 )  −  ( 𝑇  −  𝐹 ) ) ) ) | 
						
							| 56 | 7 15 55 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑆  splice  〈 𝐹 ,  𝑇 ,  𝑅 〉 ) )  =  ( ( ♯ ‘ 𝑆 )  +  ( ( ♯ ‘ 𝑅 )  −  ( 𝑇  −  𝐹 ) ) ) ) |