| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spllen.s |
⊢ ( 𝜑 → 𝑆 ∈ Word 𝐴 ) |
| 2 |
|
spllen.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... 𝑇 ) ) |
| 3 |
|
spllen.t |
⊢ ( 𝜑 → 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 4 |
|
spllen.r |
⊢ ( 𝜑 → 𝑅 ∈ Word 𝐴 ) |
| 5 |
|
splval |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑅 ∈ Word 𝐴 ) ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 6 |
1 2 3 4 5
|
syl13anc |
⊢ ( 𝜑 → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) = ( ♯ ‘ ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 8 |
|
pfxcl |
⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ) |
| 9 |
1 8
|
syl |
⊢ ( 𝜑 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ) |
| 10 |
|
ccatcl |
⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ) |
| 11 |
9 4 10
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ) |
| 12 |
|
swrdcl |
⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) |
| 13 |
1 12
|
syl |
⊢ ( 𝜑 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) |
| 14 |
|
ccatlen |
⊢ ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ∧ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) → ( ♯ ‘ ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 15 |
11 13 14
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 16 |
|
lencl |
⊢ ( 𝑅 ∈ Word 𝐴 → ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) |
| 17 |
16
|
nn0cnd |
⊢ ( 𝑅 ∈ Word 𝐴 → ( ♯ ‘ 𝑅 ) ∈ ℂ ) |
| 18 |
4 17
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ∈ ℂ ) |
| 19 |
|
elfzelz |
⊢ ( 𝐹 ∈ ( 0 ... 𝑇 ) → 𝐹 ∈ ℤ ) |
| 20 |
19
|
zcnd |
⊢ ( 𝐹 ∈ ( 0 ... 𝑇 ) → 𝐹 ∈ ℂ ) |
| 21 |
2 20
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
| 22 |
18 21
|
addcld |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ∈ ℂ ) |
| 23 |
|
elfzel2 |
⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ℤ ) |
| 24 |
23
|
zcnd |
⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 25 |
3 24
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 26 |
|
elfzelz |
⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → 𝑇 ∈ ℤ ) |
| 27 |
26
|
zcnd |
⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → 𝑇 ∈ ℂ ) |
| 28 |
3 27
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 29 |
22 25 28
|
addsub12d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑅 ) + 𝐹 ) + ( ( ♯ ‘ 𝑆 ) − 𝑇 ) ) = ( ( ♯ ‘ 𝑆 ) + ( ( ( ♯ ‘ 𝑅 ) + 𝐹 ) − 𝑇 ) ) ) |
| 30 |
|
ccatlen |
⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) ) |
| 31 |
9 4 30
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) ) |
| 32 |
|
elfzuz |
⊢ ( 𝐹 ∈ ( 0 ... 𝑇 ) → 𝐹 ∈ ( ℤ≥ ‘ 0 ) ) |
| 33 |
2 32
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( ℤ≥ ‘ 0 ) ) |
| 34 |
|
elfzuz3 |
⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ) |
| 35 |
3 34
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ) |
| 36 |
|
elfzuz3 |
⊢ ( 𝐹 ∈ ( 0 ... 𝑇 ) → 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 37 |
2 36
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 38 |
|
uztrn |
⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ∧ 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 39 |
35 37 38
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 40 |
|
elfzuzb |
⊢ ( 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( 𝐹 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) ) |
| 41 |
33 39 40
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 42 |
|
pfxlen |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) |
| 43 |
1 41 42
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) |
| 44 |
43
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) = ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) |
| 45 |
21 18
|
addcomd |
⊢ ( 𝜑 → ( 𝐹 + ( ♯ ‘ 𝑅 ) ) = ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) |
| 46 |
31 44 45
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) |
| 47 |
|
elfzuz2 |
⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 48 |
|
eluzfz2 |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) → ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 49 |
3 47 48
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 50 |
|
swrdlen |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) = ( ( ♯ ‘ 𝑆 ) − 𝑇 ) ) |
| 51 |
1 3 49 50
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) = ( ( ♯ ‘ 𝑆 ) − 𝑇 ) ) |
| 52 |
46 51
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( ( ♯ ‘ 𝑅 ) + 𝐹 ) + ( ( ♯ ‘ 𝑆 ) − 𝑇 ) ) ) |
| 53 |
18 28 21
|
subsub3d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑅 ) − ( 𝑇 − 𝐹 ) ) = ( ( ( ♯ ‘ 𝑅 ) + 𝐹 ) − 𝑇 ) ) |
| 54 |
53
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) + ( ( ♯ ‘ 𝑅 ) − ( 𝑇 − 𝐹 ) ) ) = ( ( ♯ ‘ 𝑆 ) + ( ( ( ♯ ‘ 𝑅 ) + 𝐹 ) − 𝑇 ) ) ) |
| 55 |
29 52 54
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) + ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( ( ♯ ‘ 𝑆 ) + ( ( ♯ ‘ 𝑅 ) − ( 𝑇 − 𝐹 ) ) ) ) |
| 56 |
7 15 55
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ) = ( ( ♯ ‘ 𝑆 ) + ( ( ♯ ‘ 𝑅 ) − ( 𝑇 − 𝐹 ) ) ) ) |