| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgext.s | ⊢ 𝑆  =  ( Base ‘ ( SymGrp ‘ ( 𝑁  ∖  { 𝐾 } ) ) ) | 
						
							| 2 |  | symgext.e | ⊢ 𝐸  =  ( 𝑥  ∈  𝑁  ↦  if ( 𝑥  =  𝐾 ,  𝐾 ,  ( 𝑍 ‘ 𝑥 ) ) ) | 
						
							| 3 | 1 2 | symgextf | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  𝐸 : 𝑁 ⟶ 𝑁 ) | 
						
							| 4 |  | difsnid | ⊢ ( 𝐾  ∈  𝑁  →  ( ( 𝑁  ∖  { 𝐾 } )  ∪  { 𝐾 } )  =  𝑁 ) | 
						
							| 5 | 4 | eqcomd | ⊢ ( 𝐾  ∈  𝑁  →  𝑁  =  ( ( 𝑁  ∖  { 𝐾 } )  ∪  { 𝐾 } ) ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( 𝐾  ∈  𝑁  →  ( 𝑦  ∈  𝑁  ↔  𝑦  ∈  ( ( 𝑁  ∖  { 𝐾 } )  ∪  { 𝐾 } ) ) ) | 
						
							| 7 | 5 | eleq2d | ⊢ ( 𝐾  ∈  𝑁  →  ( 𝑧  ∈  𝑁  ↔  𝑧  ∈  ( ( 𝑁  ∖  { 𝐾 } )  ∪  { 𝐾 } ) ) ) | 
						
							| 8 | 6 7 | anbi12d | ⊢ ( 𝐾  ∈  𝑁  →  ( ( 𝑦  ∈  𝑁  ∧  𝑧  ∈  𝑁 )  ↔  ( 𝑦  ∈  ( ( 𝑁  ∖  { 𝐾 } )  ∪  { 𝐾 } )  ∧  𝑧  ∈  ( ( 𝑁  ∖  { 𝐾 } )  ∪  { 𝐾 } ) ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( ( 𝑦  ∈  𝑁  ∧  𝑧  ∈  𝑁 )  ↔  ( 𝑦  ∈  ( ( 𝑁  ∖  { 𝐾 } )  ∪  { 𝐾 } )  ∧  𝑧  ∈  ( ( 𝑁  ∖  { 𝐾 } )  ∪  { 𝐾 } ) ) ) ) | 
						
							| 10 |  | elun | ⊢ ( 𝑦  ∈  ( ( 𝑁  ∖  { 𝐾 } )  ∪  { 𝐾 } )  ↔  ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∨  𝑦  ∈  { 𝐾 } ) ) | 
						
							| 11 |  | elun | ⊢ ( 𝑧  ∈  ( ( 𝑁  ∖  { 𝐾 } )  ∪  { 𝐾 } )  ↔  ( 𝑧  ∈  ( 𝑁  ∖  { 𝐾 } )  ∨  𝑧  ∈  { 𝐾 } ) ) | 
						
							| 12 | 1 2 | symgextfv | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  →  ( 𝐸 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑦 ) ) ) | 
						
							| 13 | 12 | com12 | ⊢ ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  →  ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( 𝐸 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑦 ) ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( 𝐸 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑦 ) ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  ∧  ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 ) )  →  ( 𝐸 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑦 ) ) | 
						
							| 16 | 1 2 | symgextfv | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( 𝑧  ∈  ( 𝑁  ∖  { 𝐾 } )  →  ( 𝐸 ‘ 𝑧 )  =  ( 𝑍 ‘ 𝑧 ) ) ) | 
						
							| 17 | 16 | com12 | ⊢ ( 𝑧  ∈  ( 𝑁  ∖  { 𝐾 } )  →  ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( 𝐸 ‘ 𝑧 )  =  ( 𝑍 ‘ 𝑧 ) ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( 𝐸 ‘ 𝑧 )  =  ( 𝑍 ‘ 𝑧 ) ) ) | 
						
							| 19 | 18 | imp | ⊢ ( ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  ∧  ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 ) )  →  ( 𝐸 ‘ 𝑧 )  =  ( 𝑍 ‘ 𝑧 ) ) | 
						
							| 20 | 15 19 | eqeq12d | ⊢ ( ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  ∧  ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 ) )  →  ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  ↔  ( 𝑍 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑧 ) ) ) | 
						
							| 21 |  | eqid | ⊢ ( SymGrp ‘ ( 𝑁  ∖  { 𝐾 } ) )  =  ( SymGrp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 22 | 21 1 | symgbasf1o | ⊢ ( 𝑍  ∈  𝑆  →  𝑍 : ( 𝑁  ∖  { 𝐾 } ) –1-1-onto→ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 23 |  | f1of1 | ⊢ ( 𝑍 : ( 𝑁  ∖  { 𝐾 } ) –1-1-onto→ ( 𝑁  ∖  { 𝐾 } )  →  𝑍 : ( 𝑁  ∖  { 𝐾 } ) –1-1→ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 24 |  | dff13 | ⊢ ( 𝑍 : ( 𝑁  ∖  { 𝐾 } ) –1-1→ ( 𝑁  ∖  { 𝐾 } )  ↔  ( 𝑍 : ( 𝑁  ∖  { 𝐾 } ) ⟶ ( 𝑁  ∖  { 𝐾 } )  ∧  ∀ 𝑖  ∈  ( 𝑁  ∖  { 𝐾 } ) ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑍 ‘ 𝑖 )  =  ( 𝑍 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 25 |  | fveqeq2 | ⊢ ( 𝑖  =  𝑦  →  ( ( 𝑍 ‘ 𝑖 )  =  ( 𝑍 ‘ 𝑗 )  ↔  ( 𝑍 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑗 ) ) ) | 
						
							| 26 |  | equequ1 | ⊢ ( 𝑖  =  𝑦  →  ( 𝑖  =  𝑗  ↔  𝑦  =  𝑗 ) ) | 
						
							| 27 | 25 26 | imbi12d | ⊢ ( 𝑖  =  𝑦  →  ( ( ( 𝑍 ‘ 𝑖 )  =  ( 𝑍 ‘ 𝑗 )  →  𝑖  =  𝑗 )  ↔  ( ( 𝑍 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑗 )  →  𝑦  =  𝑗 ) ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑗  =  𝑧  →  ( 𝑍 ‘ 𝑗 )  =  ( 𝑍 ‘ 𝑧 ) ) | 
						
							| 29 | 28 | eqeq2d | ⊢ ( 𝑗  =  𝑧  →  ( ( 𝑍 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑗 )  ↔  ( 𝑍 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑧 ) ) ) | 
						
							| 30 |  | equequ2 | ⊢ ( 𝑗  =  𝑧  →  ( 𝑦  =  𝑗  ↔  𝑦  =  𝑧 ) ) | 
						
							| 31 | 29 30 | imbi12d | ⊢ ( 𝑗  =  𝑧  →  ( ( ( 𝑍 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑗 )  →  𝑦  =  𝑗 )  ↔  ( ( 𝑍 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 32 | 27 31 | rspc2va | ⊢ ( ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  ∧  ∀ 𝑖  ∈  ( 𝑁  ∖  { 𝐾 } ) ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑍 ‘ 𝑖 )  =  ( 𝑍 ‘ 𝑗 )  →  𝑖  =  𝑗 ) )  →  ( ( 𝑍 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 33 | 32 | expcom | ⊢ ( ∀ 𝑖  ∈  ( 𝑁  ∖  { 𝐾 } ) ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑍 ‘ 𝑖 )  =  ( 𝑍 ‘ 𝑗 )  →  𝑖  =  𝑗 )  →  ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  ( ( 𝑍 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 34 | 33 | a1d | ⊢ ( ∀ 𝑖  ∈  ( 𝑁  ∖  { 𝐾 } ) ∀ 𝑗  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑍 ‘ 𝑖 )  =  ( 𝑍 ‘ 𝑗 )  →  𝑖  =  𝑗 )  →  ( 𝐾  ∈  𝑁  →  ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  ( ( 𝑍 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) ) | 
						
							| 35 | 24 34 | simplbiim | ⊢ ( 𝑍 : ( 𝑁  ∖  { 𝐾 } ) –1-1→ ( 𝑁  ∖  { 𝐾 } )  →  ( 𝐾  ∈  𝑁  →  ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  ( ( 𝑍 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) ) | 
						
							| 36 | 22 23 35 | 3syl | ⊢ ( 𝑍  ∈  𝑆  →  ( 𝐾  ∈  𝑁  →  ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  ( ( 𝑍 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) ) | 
						
							| 37 | 36 | impcom | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  ( ( 𝑍 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 38 | 37 | impcom | ⊢ ( ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  ∧  ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 ) )  →  ( ( 𝑍 ‘ 𝑦 )  =  ( 𝑍 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 39 | 20 38 | sylbid | ⊢ ( ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  ∧  ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 ) )  →  ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 40 | 39 | ex | ⊢ ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 41 | 1 2 | symgextf1lem | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( ( 𝑧  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑦  ∈  { 𝐾 } )  →  ( 𝐸 ‘ 𝑧 )  ≠  ( 𝐸 ‘ 𝑦 ) ) ) | 
						
							| 42 |  | eqneqall | ⊢ ( ( 𝐸 ‘ 𝑧 )  =  ( 𝐸 ‘ 𝑦 )  →  ( ( 𝐸 ‘ 𝑧 )  ≠  ( 𝐸 ‘ 𝑦 )  →  𝑦  =  𝑧 ) ) | 
						
							| 43 | 42 | eqcoms | ⊢ ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  ( ( 𝐸 ‘ 𝑧 )  ≠  ( 𝐸 ‘ 𝑦 )  →  𝑦  =  𝑧 ) ) | 
						
							| 44 | 43 | com12 | ⊢ ( ( 𝐸 ‘ 𝑧 )  ≠  ( 𝐸 ‘ 𝑦 )  →  ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 45 | 41 44 | syl6com | ⊢ ( ( 𝑧  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑦  ∈  { 𝐾 } )  →  ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 46 | 45 | ancoms | ⊢ ( ( 𝑦  ∈  { 𝐾 }  ∧  𝑧  ∈  ( 𝑁  ∖  { 𝐾 } ) )  →  ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 47 | 1 2 | symgextf1lem | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  { 𝐾 } )  →  ( 𝐸 ‘ 𝑦 )  ≠  ( 𝐸 ‘ 𝑧 ) ) ) | 
						
							| 48 |  | eqneqall | ⊢ ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  ( ( 𝐸 ‘ 𝑦 )  ≠  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 49 | 48 | com12 | ⊢ ( ( 𝐸 ‘ 𝑦 )  ≠  ( 𝐸 ‘ 𝑧 )  →  ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 50 | 47 49 | syl6com | ⊢ ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∧  𝑧  ∈  { 𝐾 } )  →  ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 51 |  | elsni | ⊢ ( 𝑦  ∈  { 𝐾 }  →  𝑦  =  𝐾 ) | 
						
							| 52 |  | elsni | ⊢ ( 𝑧  ∈  { 𝐾 }  →  𝑧  =  𝐾 ) | 
						
							| 53 |  | eqtr3 | ⊢ ( ( 𝑦  =  𝐾  ∧  𝑧  =  𝐾 )  →  𝑦  =  𝑧 ) | 
						
							| 54 | 53 | 2a1d | ⊢ ( ( 𝑦  =  𝐾  ∧  𝑧  =  𝐾 )  →  ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 55 | 51 52 54 | syl2an | ⊢ ( ( 𝑦  ∈  { 𝐾 }  ∧  𝑧  ∈  { 𝐾 } )  →  ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 56 | 40 46 50 55 | ccase | ⊢ ( ( ( 𝑦  ∈  ( 𝑁  ∖  { 𝐾 } )  ∨  𝑦  ∈  { 𝐾 } )  ∧  ( 𝑧  ∈  ( 𝑁  ∖  { 𝐾 } )  ∨  𝑧  ∈  { 𝐾 } ) )  →  ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 57 | 10 11 56 | syl2anb | ⊢ ( ( 𝑦  ∈  ( ( 𝑁  ∖  { 𝐾 } )  ∪  { 𝐾 } )  ∧  𝑧  ∈  ( ( 𝑁  ∖  { 𝐾 } )  ∪  { 𝐾 } ) )  →  ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 58 | 57 | com12 | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( ( 𝑦  ∈  ( ( 𝑁  ∖  { 𝐾 } )  ∪  { 𝐾 } )  ∧  𝑧  ∈  ( ( 𝑁  ∖  { 𝐾 } )  ∪  { 𝐾 } ) )  →  ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 59 | 9 58 | sylbid | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ( ( 𝑦  ∈  𝑁  ∧  𝑧  ∈  𝑁 )  →  ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 60 | 59 | ralrimivv | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  ∀ 𝑦  ∈  𝑁 ∀ 𝑧  ∈  𝑁 ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 61 |  | dff13 | ⊢ ( 𝐸 : 𝑁 –1-1→ 𝑁  ↔  ( 𝐸 : 𝑁 ⟶ 𝑁  ∧  ∀ 𝑦  ∈  𝑁 ∀ 𝑧  ∈  𝑁 ( ( 𝐸 ‘ 𝑦 )  =  ( 𝐸 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 62 | 3 60 61 | sylanbrc | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑍  ∈  𝑆 )  →  𝐸 : 𝑁 –1-1→ 𝑁 ) |