Step |
Hyp |
Ref |
Expression |
1 |
|
symgext.s |
⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
2 |
|
symgext.e |
⊢ 𝐸 = ( 𝑥 ∈ 𝑁 ↦ if ( 𝑥 = 𝐾 , 𝐾 , ( 𝑍 ‘ 𝑥 ) ) ) |
3 |
1 2
|
symgextf |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 ⟶ 𝑁 ) |
4 |
|
difsnid |
⊢ ( 𝐾 ∈ 𝑁 → ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) = 𝑁 ) |
5 |
4
|
eqcomd |
⊢ ( 𝐾 ∈ 𝑁 → 𝑁 = ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) |
6 |
5
|
eleq2d |
⊢ ( 𝐾 ∈ 𝑁 → ( 𝑦 ∈ 𝑁 ↔ 𝑦 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ) |
7 |
5
|
eleq2d |
⊢ ( 𝐾 ∈ 𝑁 → ( 𝑧 ∈ 𝑁 ↔ 𝑧 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ) |
8 |
6 7
|
anbi12d |
⊢ ( 𝐾 ∈ 𝑁 → ( ( 𝑦 ∈ 𝑁 ∧ 𝑧 ∈ 𝑁 ) ↔ ( 𝑦 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∧ 𝑧 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝑦 ∈ 𝑁 ∧ 𝑧 ∈ 𝑁 ) ↔ ( 𝑦 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∧ 𝑧 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) ) ) |
10 |
|
elun |
⊢ ( 𝑦 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↔ ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∨ 𝑦 ∈ { 𝐾 } ) ) |
11 |
|
elun |
⊢ ( 𝑧 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ↔ ( 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ∨ 𝑧 ∈ { 𝐾 } ) ) |
12 |
1 2
|
symgextfv |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑦 ) ) ) |
13 |
12
|
com12 |
⊢ ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑦 ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑦 ) ) ) |
15 |
14
|
imp |
⊢ ( ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑦 ) ) |
16 |
1 2
|
symgextfv |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( 𝐸 ‘ 𝑧 ) = ( 𝑍 ‘ 𝑧 ) ) ) |
17 |
16
|
com12 |
⊢ ( 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝐸 ‘ 𝑧 ) = ( 𝑍 ‘ 𝑧 ) ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( 𝐸 ‘ 𝑧 ) = ( 𝑍 ‘ 𝑧 ) ) ) |
19 |
18
|
imp |
⊢ ( ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) ) → ( 𝐸 ‘ 𝑧 ) = ( 𝑍 ‘ 𝑧 ) ) |
20 |
15 19
|
eqeq12d |
⊢ ( ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) ↔ ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) ) ) |
21 |
|
eqid |
⊢ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
22 |
21 1
|
symgbasf1o |
⊢ ( 𝑍 ∈ 𝑆 → 𝑍 : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ) |
23 |
|
f1of1 |
⊢ ( 𝑍 : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) → 𝑍 : ( 𝑁 ∖ { 𝐾 } ) –1-1→ ( 𝑁 ∖ { 𝐾 } ) ) |
24 |
|
dff13 |
⊢ ( 𝑍 : ( 𝑁 ∖ { 𝐾 } ) –1-1→ ( 𝑁 ∖ { 𝐾 } ) ↔ ( 𝑍 : ( 𝑁 ∖ { 𝐾 } ) ⟶ ( 𝑁 ∖ { 𝐾 } ) ∧ ∀ 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) ∀ 𝑗 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑍 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) |
25 |
|
fveqeq2 |
⊢ ( 𝑖 = 𝑦 → ( ( 𝑍 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑗 ) ↔ ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑗 ) ) ) |
26 |
|
equequ1 |
⊢ ( 𝑖 = 𝑦 → ( 𝑖 = 𝑗 ↔ 𝑦 = 𝑗 ) ) |
27 |
25 26
|
imbi12d |
⊢ ( 𝑖 = 𝑦 → ( ( ( 𝑍 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ↔ ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑗 ) → 𝑦 = 𝑗 ) ) ) |
28 |
|
fveq2 |
⊢ ( 𝑗 = 𝑧 → ( 𝑍 ‘ 𝑗 ) = ( 𝑍 ‘ 𝑧 ) ) |
29 |
28
|
eqeq2d |
⊢ ( 𝑗 = 𝑧 → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑗 ) ↔ ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) ) ) |
30 |
|
equequ2 |
⊢ ( 𝑗 = 𝑧 → ( 𝑦 = 𝑗 ↔ 𝑦 = 𝑧 ) ) |
31 |
29 30
|
imbi12d |
⊢ ( 𝑗 = 𝑧 → ( ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑗 ) → 𝑦 = 𝑗 ) ↔ ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
32 |
27 31
|
rspc2va |
⊢ ( ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ∀ 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) ∀ 𝑗 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑍 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
33 |
32
|
expcom |
⊢ ( ∀ 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) ∀ 𝑗 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑍 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑗 ) → 𝑖 = 𝑗 ) → ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
34 |
33
|
a1d |
⊢ ( ∀ 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) ∀ 𝑗 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑍 ‘ 𝑖 ) = ( 𝑍 ‘ 𝑗 ) → 𝑖 = 𝑗 ) → ( 𝐾 ∈ 𝑁 → ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) ) |
35 |
24 34
|
simplbiim |
⊢ ( 𝑍 : ( 𝑁 ∖ { 𝐾 } ) –1-1→ ( 𝑁 ∖ { 𝐾 } ) → ( 𝐾 ∈ 𝑁 → ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) ) |
36 |
22 23 35
|
3syl |
⊢ ( 𝑍 ∈ 𝑆 → ( 𝐾 ∈ 𝑁 → ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) ) |
37 |
36
|
impcom |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
38 |
37
|
impcom |
⊢ ( ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝑍 ‘ 𝑦 ) = ( 𝑍 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
39 |
20 38
|
sylbid |
⊢ ( ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
40 |
39
|
ex |
⊢ ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
41 |
1 2
|
symgextf1lem |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑦 ∈ { 𝐾 } ) → ( 𝐸 ‘ 𝑧 ) ≠ ( 𝐸 ‘ 𝑦 ) ) ) |
42 |
|
eqneqall |
⊢ ( ( 𝐸 ‘ 𝑧 ) = ( 𝐸 ‘ 𝑦 ) → ( ( 𝐸 ‘ 𝑧 ) ≠ ( 𝐸 ‘ 𝑦 ) → 𝑦 = 𝑧 ) ) |
43 |
42
|
eqcoms |
⊢ ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → ( ( 𝐸 ‘ 𝑧 ) ≠ ( 𝐸 ‘ 𝑦 ) → 𝑦 = 𝑧 ) ) |
44 |
43
|
com12 |
⊢ ( ( 𝐸 ‘ 𝑧 ) ≠ ( 𝐸 ‘ 𝑦 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
45 |
41 44
|
syl6com |
⊢ ( ( 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑦 ∈ { 𝐾 } ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
46 |
45
|
ancoms |
⊢ ( ( 𝑦 ∈ { 𝐾 } ∧ 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
47 |
1 2
|
symgextf1lem |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ { 𝐾 } ) → ( 𝐸 ‘ 𝑦 ) ≠ ( 𝐸 ‘ 𝑧 ) ) ) |
48 |
|
eqneqall |
⊢ ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → ( ( 𝐸 ‘ 𝑦 ) ≠ ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
49 |
48
|
com12 |
⊢ ( ( 𝐸 ‘ 𝑦 ) ≠ ( 𝐸 ‘ 𝑧 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
50 |
47 49
|
syl6com |
⊢ ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∧ 𝑧 ∈ { 𝐾 } ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
51 |
|
elsni |
⊢ ( 𝑦 ∈ { 𝐾 } → 𝑦 = 𝐾 ) |
52 |
|
elsni |
⊢ ( 𝑧 ∈ { 𝐾 } → 𝑧 = 𝐾 ) |
53 |
|
eqtr3 |
⊢ ( ( 𝑦 = 𝐾 ∧ 𝑧 = 𝐾 ) → 𝑦 = 𝑧 ) |
54 |
53
|
2a1d |
⊢ ( ( 𝑦 = 𝐾 ∧ 𝑧 = 𝐾 ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
55 |
51 52 54
|
syl2an |
⊢ ( ( 𝑦 ∈ { 𝐾 } ∧ 𝑧 ∈ { 𝐾 } ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
56 |
40 46 50 55
|
ccase |
⊢ ( ( ( 𝑦 ∈ ( 𝑁 ∖ { 𝐾 } ) ∨ 𝑦 ∈ { 𝐾 } ) ∧ ( 𝑧 ∈ ( 𝑁 ∖ { 𝐾 } ) ∨ 𝑧 ∈ { 𝐾 } ) ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
57 |
10 11 56
|
syl2anb |
⊢ ( ( 𝑦 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∧ 𝑧 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) → ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
58 |
57
|
com12 |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∧ 𝑧 ∈ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
59 |
9 58
|
sylbid |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ( ( 𝑦 ∈ 𝑁 ∧ 𝑧 ∈ 𝑁 ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
60 |
59
|
ralrimivv |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
61 |
|
dff13 |
⊢ ( 𝐸 : 𝑁 –1-1→ 𝑁 ↔ ( 𝐸 : 𝑁 ⟶ 𝑁 ∧ ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
62 |
3 60 61
|
sylanbrc |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆 ) → 𝐸 : 𝑁 –1-1→ 𝑁 ) |