| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgbtwnconn1.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tgbtwnconn1.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
tgbtwnconn1.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 4 |
|
tgbtwnconn1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 5 |
|
tgbtwnconn1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 6 |
|
tgbtwnconn1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 7 |
|
tgbtwnconn1.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 8 |
|
tgbtwnconn1.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 9 |
|
tgbtwnconn1.2 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 10 |
|
tgbtwnconn1.3 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 11 |
|
tgbtwnconn1.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 12 |
|
tgbtwnconn1.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
| 13 |
|
tgbtwnconn1.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
| 14 |
|
tgbtwnconn1.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝑃 ) |
| 15 |
|
tgbtwnconn1.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑃 ) |
| 16 |
|
tgbtwnconn1.4 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 𝐼 𝐸 ) ) |
| 17 |
|
tgbtwnconn1.5 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝐹 ) ) |
| 18 |
|
tgbtwnconn1.6 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐴 𝐼 𝐻 ) ) |
| 19 |
|
tgbtwnconn1.7 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 𝐼 𝐽 ) ) |
| 20 |
|
tgbtwnconn1.8 |
⊢ ( 𝜑 → ( 𝐸 − 𝐷 ) = ( 𝐶 − 𝐷 ) ) |
| 21 |
|
tgbtwnconn1.9 |
⊢ ( 𝜑 → ( 𝐶 − 𝐹 ) = ( 𝐶 − 𝐷 ) ) |
| 22 |
|
tgbtwnconn1.10 |
⊢ ( 𝜑 → ( 𝐸 − 𝐻 ) = ( 𝐵 − 𝐶 ) ) |
| 23 |
|
tgbtwnconn1.11 |
⊢ ( 𝜑 → ( 𝐹 − 𝐽 ) = ( 𝐵 − 𝐷 ) ) |
| 24 |
1 11 2 3 12 13
|
axtgcgrrflx |
⊢ ( 𝜑 → ( 𝐸 − 𝐹 ) = ( 𝐹 − 𝐸 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐸 − 𝐹 ) = ( 𝐹 − 𝐸 ) ) |
| 26 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐺 ∈ TarskiG ) |
| 27 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐸 ∈ 𝑃 ) |
| 28 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐻 ∈ 𝑃 ) |
| 29 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐶 ∈ 𝑃 ) |
| 30 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐸 − 𝐻 ) = ( 𝐵 − 𝐶 ) ) |
| 31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐵 = 𝐶 ) |
| 32 |
31
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐵 − 𝐶 ) = ( 𝐶 − 𝐶 ) ) |
| 33 |
30 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐸 − 𝐻 ) = ( 𝐶 − 𝐶 ) ) |
| 34 |
1 11 2 26 27 28 29 33
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐸 = 𝐻 ) |
| 35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
tgbtwnconn1lem1 |
⊢ ( 𝜑 → 𝐻 = 𝐽 ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐻 = 𝐽 ) |
| 37 |
34 36
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐸 = 𝐽 ) |
| 38 |
37
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐹 − 𝐸 ) = ( 𝐹 − 𝐽 ) ) |
| 39 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐹 − 𝐽 ) = ( 𝐵 − 𝐷 ) ) |
| 40 |
31
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐷 ) ) |
| 41 |
38 39 40
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐹 − 𝐸 ) = ( 𝐶 − 𝐷 ) ) |
| 42 |
25 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐸 − 𝐹 ) = ( 𝐶 − 𝐷 ) ) |
| 43 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐺 ∈ TarskiG ) |
| 44 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐹 ∈ 𝑃 ) |
| 45 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐸 ∈ 𝑃 ) |
| 46 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐷 ∈ 𝑃 ) |
| 47 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ 𝑃 ) |
| 48 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ 𝑃 ) |
| 49 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐽 ∈ 𝑃 ) |
| 50 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
| 51 |
1 11 2 3 4 5 6 13 9 17
|
tgbtwnexch3 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 𝐼 𝐹 ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ ( 𝐵 𝐼 𝐹 ) ) |
| 53 |
35
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 𝐼 𝐻 ) = ( 𝐴 𝐼 𝐽 ) ) |
| 54 |
18 53
|
eleqtrd |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐴 𝐼 𝐽 ) ) |
| 55 |
1 11 2 3 4 7 12 15 16 54
|
tgbtwnexch3 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐷 𝐼 𝐽 ) ) |
| 56 |
1 11 2 3 7 12 15 55
|
tgbtwncom |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐽 𝐼 𝐷 ) ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐸 ∈ ( 𝐽 𝐼 𝐷 ) ) |
| 58 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐻 = 𝐽 ) |
| 59 |
58
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐸 − 𝐻 ) = ( 𝐸 − 𝐽 ) ) |
| 60 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐸 − 𝐻 ) = ( 𝐵 − 𝐶 ) ) |
| 61 |
1 11 2 43 45 49
|
axtgcgrrflx |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐸 − 𝐽 ) = ( 𝐽 − 𝐸 ) ) |
| 62 |
59 60 61
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 − 𝐶 ) = ( 𝐽 − 𝐸 ) ) |
| 63 |
21 20
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐶 − 𝐹 ) = ( 𝐸 − 𝐷 ) ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐶 − 𝐹 ) = ( 𝐸 − 𝐷 ) ) |
| 65 |
1 11 2 3 4 5 7 12 10 16
|
tgbtwnexch3 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐵 𝐼 𝐸 ) ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐷 ∈ ( 𝐵 𝐼 𝐸 ) ) |
| 67 |
1 11 2 3 4 6 13 15 17 19
|
tgbtwnexch3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 𝐼 𝐽 ) ) |
| 68 |
1 11 2 3 6 13 15 67
|
tgbtwncom |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 𝐼 𝐶 ) ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐹 ∈ ( 𝐽 𝐼 𝐶 ) ) |
| 70 |
1 11 2 3 15 13
|
axtgcgrrflx |
⊢ ( 𝜑 → ( 𝐽 − 𝐹 ) = ( 𝐹 − 𝐽 ) ) |
| 71 |
70 23
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐵 − 𝐷 ) = ( 𝐽 − 𝐹 ) ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 − 𝐷 ) = ( 𝐽 − 𝐹 ) ) |
| 73 |
1 11 2 3 6 13 12 7 63
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐹 − 𝐶 ) = ( 𝐷 − 𝐸 ) ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐹 − 𝐶 ) = ( 𝐷 − 𝐸 ) ) |
| 75 |
74
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐷 − 𝐸 ) = ( 𝐹 − 𝐶 ) ) |
| 76 |
1 11 2 43 48 46 45 49 44 47 66 69 72 75
|
tgcgrextend |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 − 𝐸 ) = ( 𝐽 − 𝐶 ) ) |
| 77 |
1 11 2 43 47 45
|
axtgcgrrflx |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐶 − 𝐸 ) = ( 𝐸 − 𝐶 ) ) |
| 78 |
1 11 2 43 48 47 44 49 45 46 45 47 50 52 57 62 64 76 77
|
axtg5seg |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐹 − 𝐸 ) = ( 𝐷 − 𝐶 ) ) |
| 79 |
1 11 2 43 44 45 46 47 78
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐸 − 𝐹 ) = ( 𝐶 − 𝐷 ) ) |
| 80 |
42 79
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐸 − 𝐹 ) = ( 𝐶 − 𝐷 ) ) |