Step |
Hyp |
Ref |
Expression |
1 |
|
tgbtwnconn1.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tgbtwnconn1.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
tgbtwnconn1.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
4 |
|
tgbtwnconn1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
5 |
|
tgbtwnconn1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
6 |
|
tgbtwnconn1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
7 |
|
tgbtwnconn1.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
8 |
|
tgbtwnconn1.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
9 |
|
tgbtwnconn1.2 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
10 |
|
tgbtwnconn1.3 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
11 |
|
tgbtwnconn1.m |
⊢ − = ( dist ‘ 𝐺 ) |
12 |
|
tgbtwnconn1.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
13 |
|
tgbtwnconn1.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
14 |
|
tgbtwnconn1.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝑃 ) |
15 |
|
tgbtwnconn1.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑃 ) |
16 |
|
tgbtwnconn1.4 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 𝐼 𝐸 ) ) |
17 |
|
tgbtwnconn1.5 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝐹 ) ) |
18 |
|
tgbtwnconn1.6 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐴 𝐼 𝐻 ) ) |
19 |
|
tgbtwnconn1.7 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 𝐼 𝐽 ) ) |
20 |
|
tgbtwnconn1.8 |
⊢ ( 𝜑 → ( 𝐸 − 𝐷 ) = ( 𝐶 − 𝐷 ) ) |
21 |
|
tgbtwnconn1.9 |
⊢ ( 𝜑 → ( 𝐶 − 𝐹 ) = ( 𝐶 − 𝐷 ) ) |
22 |
|
tgbtwnconn1.10 |
⊢ ( 𝜑 → ( 𝐸 − 𝐻 ) = ( 𝐵 − 𝐶 ) ) |
23 |
|
tgbtwnconn1.11 |
⊢ ( 𝜑 → ( 𝐹 − 𝐽 ) = ( 𝐵 − 𝐷 ) ) |
24 |
1 11 2 3 12 13
|
axtgcgrrflx |
⊢ ( 𝜑 → ( 𝐸 − 𝐹 ) = ( 𝐹 − 𝐸 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐸 − 𝐹 ) = ( 𝐹 − 𝐸 ) ) |
26 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐺 ∈ TarskiG ) |
27 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐸 ∈ 𝑃 ) |
28 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐻 ∈ 𝑃 ) |
29 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐶 ∈ 𝑃 ) |
30 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐸 − 𝐻 ) = ( 𝐵 − 𝐶 ) ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐵 = 𝐶 ) |
32 |
31
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐵 − 𝐶 ) = ( 𝐶 − 𝐶 ) ) |
33 |
30 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐸 − 𝐻 ) = ( 𝐶 − 𝐶 ) ) |
34 |
1 11 2 26 27 28 29 33
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐸 = 𝐻 ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
tgbtwnconn1lem1 |
⊢ ( 𝜑 → 𝐻 = 𝐽 ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐻 = 𝐽 ) |
37 |
34 36
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → 𝐸 = 𝐽 ) |
38 |
37
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐹 − 𝐸 ) = ( 𝐹 − 𝐽 ) ) |
39 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐹 − 𝐽 ) = ( 𝐵 − 𝐷 ) ) |
40 |
31
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐵 − 𝐷 ) = ( 𝐶 − 𝐷 ) ) |
41 |
38 39 40
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐹 − 𝐸 ) = ( 𝐶 − 𝐷 ) ) |
42 |
25 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 𝐶 ) → ( 𝐸 − 𝐹 ) = ( 𝐶 − 𝐷 ) ) |
43 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐺 ∈ TarskiG ) |
44 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐹 ∈ 𝑃 ) |
45 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐸 ∈ 𝑃 ) |
46 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐷 ∈ 𝑃 ) |
47 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ 𝑃 ) |
48 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ∈ 𝑃 ) |
49 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐽 ∈ 𝑃 ) |
50 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
51 |
1 11 2 3 4 5 6 13 9 17
|
tgbtwnexch3 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 𝐼 𝐹 ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ∈ ( 𝐵 𝐼 𝐹 ) ) |
53 |
35
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 𝐼 𝐻 ) = ( 𝐴 𝐼 𝐽 ) ) |
54 |
18 53
|
eleqtrd |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐴 𝐼 𝐽 ) ) |
55 |
1 11 2 3 4 7 12 15 16 54
|
tgbtwnexch3 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐷 𝐼 𝐽 ) ) |
56 |
1 11 2 3 7 12 15 55
|
tgbtwncom |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐽 𝐼 𝐷 ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐸 ∈ ( 𝐽 𝐼 𝐷 ) ) |
58 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐻 = 𝐽 ) |
59 |
58
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐸 − 𝐻 ) = ( 𝐸 − 𝐽 ) ) |
60 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐸 − 𝐻 ) = ( 𝐵 − 𝐶 ) ) |
61 |
1 11 2 43 45 49
|
axtgcgrrflx |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐸 − 𝐽 ) = ( 𝐽 − 𝐸 ) ) |
62 |
59 60 61
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 − 𝐶 ) = ( 𝐽 − 𝐸 ) ) |
63 |
21 20
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐶 − 𝐹 ) = ( 𝐸 − 𝐷 ) ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐶 − 𝐹 ) = ( 𝐸 − 𝐷 ) ) |
65 |
1 11 2 3 4 5 7 12 10 16
|
tgbtwnexch3 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐵 𝐼 𝐸 ) ) |
66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐷 ∈ ( 𝐵 𝐼 𝐸 ) ) |
67 |
1 11 2 3 4 6 13 15 17 19
|
tgbtwnexch3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 𝐼 𝐽 ) ) |
68 |
1 11 2 3 6 13 15 67
|
tgbtwncom |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 𝐼 𝐶 ) ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → 𝐹 ∈ ( 𝐽 𝐼 𝐶 ) ) |
70 |
1 11 2 3 15 13
|
axtgcgrrflx |
⊢ ( 𝜑 → ( 𝐽 − 𝐹 ) = ( 𝐹 − 𝐽 ) ) |
71 |
70 23
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐵 − 𝐷 ) = ( 𝐽 − 𝐹 ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 − 𝐷 ) = ( 𝐽 − 𝐹 ) ) |
73 |
1 11 2 3 6 13 12 7 63
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐹 − 𝐶 ) = ( 𝐷 − 𝐸 ) ) |
74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐹 − 𝐶 ) = ( 𝐷 − 𝐸 ) ) |
75 |
74
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐷 − 𝐸 ) = ( 𝐹 − 𝐶 ) ) |
76 |
1 11 2 43 48 46 45 49 44 47 66 69 72 75
|
tgcgrextend |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 − 𝐸 ) = ( 𝐽 − 𝐶 ) ) |
77 |
1 11 2 43 47 45
|
axtgcgrrflx |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐶 − 𝐸 ) = ( 𝐸 − 𝐶 ) ) |
78 |
1 11 2 43 48 47 44 49 45 46 45 47 50 52 57 62 64 76 77
|
axtg5seg |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐹 − 𝐸 ) = ( 𝐷 − 𝐶 ) ) |
79 |
1 11 2 43 44 45 46 47 78
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐸 − 𝐹 ) = ( 𝐶 − 𝐷 ) ) |
80 |
42 79
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐸 − 𝐹 ) = ( 𝐶 − 𝐷 ) ) |