| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xp |
⊢ ( ∅ × ( I ‘ 𝐵 ) ) = ∅ |
| 2 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( I ‘ 𝐴 ) = ∅ ) |
| 3 |
2
|
xpeq1d |
⊢ ( ¬ 𝐴 ∈ V → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( ∅ × ( I ‘ 𝐵 ) ) ) |
| 4 |
|
simpr |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) |
| 5 |
4
|
xpeq2d |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → ( 𝐴 × 𝐵 ) = ( 𝐴 × ∅ ) ) |
| 6 |
|
xp0 |
⊢ ( 𝐴 × ∅ ) = ∅ |
| 7 |
5 6
|
eqtrdi |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → ( 𝐴 × 𝐵 ) = ∅ ) |
| 8 |
7
|
fveq2d |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ( I ‘ ∅ ) ) |
| 9 |
|
0ex |
⊢ ∅ ∈ V |
| 10 |
|
fvi |
⊢ ( ∅ ∈ V → ( I ‘ ∅ ) = ∅ ) |
| 11 |
9 10
|
ax-mp |
⊢ ( I ‘ ∅ ) = ∅ |
| 12 |
8 11
|
eqtrdi |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 13 |
|
dmexg |
⊢ ( ( 𝐴 × 𝐵 ) ∈ V → dom ( 𝐴 × 𝐵 ) ∈ V ) |
| 14 |
|
dmxp |
⊢ ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝐵 ≠ ∅ → ( dom ( 𝐴 × 𝐵 ) ∈ V ↔ 𝐴 ∈ V ) ) |
| 16 |
13 15
|
imbitrid |
⊢ ( 𝐵 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ V → 𝐴 ∈ V ) ) |
| 17 |
16
|
con3d |
⊢ ( 𝐵 ≠ ∅ → ( ¬ 𝐴 ∈ V → ¬ ( 𝐴 × 𝐵 ) ∈ V ) ) |
| 18 |
17
|
impcom |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ≠ ∅ ) → ¬ ( 𝐴 × 𝐵 ) ∈ V ) |
| 19 |
|
fvprc |
⊢ ( ¬ ( 𝐴 × 𝐵 ) ∈ V → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 20 |
18 19
|
syl |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ≠ ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 21 |
12 20
|
pm2.61dane |
⊢ ( ¬ 𝐴 ∈ V → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 22 |
1 3 21
|
3eqtr4a |
⊢ ( ¬ 𝐴 ∈ V → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) ) |
| 23 |
|
xp0 |
⊢ ( ( I ‘ 𝐴 ) × ∅ ) = ∅ |
| 24 |
|
fvprc |
⊢ ( ¬ 𝐵 ∈ V → ( I ‘ 𝐵 ) = ∅ ) |
| 25 |
24
|
xpeq2d |
⊢ ( ¬ 𝐵 ∈ V → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( ( I ‘ 𝐴 ) × ∅ ) ) |
| 26 |
|
simpr |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) |
| 27 |
26
|
xpeq1d |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → ( 𝐴 × 𝐵 ) = ( ∅ × 𝐵 ) ) |
| 28 |
|
0xp |
⊢ ( ∅ × 𝐵 ) = ∅ |
| 29 |
27 28
|
eqtrdi |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → ( 𝐴 × 𝐵 ) = ∅ ) |
| 30 |
29
|
fveq2d |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ( I ‘ ∅ ) ) |
| 31 |
30 11
|
eqtrdi |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 32 |
|
rnexg |
⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ran ( 𝐴 × 𝐵 ) ∈ V ) |
| 33 |
|
rnxp |
⊢ ( 𝐴 ≠ ∅ → ran ( 𝐴 × 𝐵 ) = 𝐵 ) |
| 34 |
33
|
eleq1d |
⊢ ( 𝐴 ≠ ∅ → ( ran ( 𝐴 × 𝐵 ) ∈ V ↔ 𝐵 ∈ V ) ) |
| 35 |
32 34
|
imbitrid |
⊢ ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ V → 𝐵 ∈ V ) ) |
| 36 |
35
|
con3d |
⊢ ( 𝐴 ≠ ∅ → ( ¬ 𝐵 ∈ V → ¬ ( 𝐴 × 𝐵 ) ∈ V ) ) |
| 37 |
36
|
impcom |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 ≠ ∅ ) → ¬ ( 𝐴 × 𝐵 ) ∈ V ) |
| 38 |
37 19
|
syl |
⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 ≠ ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 39 |
31 38
|
pm2.61dane |
⊢ ( ¬ 𝐵 ∈ V → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 40 |
23 25 39
|
3eqtr4a |
⊢ ( ¬ 𝐵 ∈ V → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) ) |
| 41 |
|
fvi |
⊢ ( 𝐴 ∈ V → ( I ‘ 𝐴 ) = 𝐴 ) |
| 42 |
|
fvi |
⊢ ( 𝐵 ∈ V → ( I ‘ 𝐵 ) = 𝐵 ) |
| 43 |
|
xpeq12 |
⊢ ( ( ( I ‘ 𝐴 ) = 𝐴 ∧ ( I ‘ 𝐵 ) = 𝐵 ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( 𝐴 × 𝐵 ) ) |
| 44 |
41 42 43
|
syl2an |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( 𝐴 × 𝐵 ) ) |
| 45 |
|
xpexg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 × 𝐵 ) ∈ V ) |
| 46 |
|
fvi |
⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ( I ‘ ( 𝐴 × 𝐵 ) ) = ( 𝐴 × 𝐵 ) ) |
| 47 |
45 46
|
syl |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ( 𝐴 × 𝐵 ) ) |
| 48 |
44 47
|
eqtr4d |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) ) |
| 49 |
22 40 48
|
ecase |
⊢ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) |