| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neq0 |
⊢ ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) |
| 2 |
|
indistop |
⊢ { ∅ , 𝐴 } ∈ Top |
| 3 |
|
indistop |
⊢ { ∅ , 𝐵 } ∈ Top |
| 4 |
|
eltx |
⊢ ( ( { ∅ , 𝐴 } ∈ Top ∧ { ∅ , 𝐵 } ∈ Top ) → ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) ) |
| 5 |
2 3 4
|
mp2an |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) |
| 6 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) → ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) ) |
| 7 |
5 6
|
sylbi |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) ) |
| 8 |
|
elssuni |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → 𝑥 ⊆ ∪ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ) |
| 9 |
|
indisuni |
⊢ ( I ‘ 𝐴 ) = ∪ { ∅ , 𝐴 } |
| 10 |
|
indisuni |
⊢ ( I ‘ 𝐵 ) = ∪ { ∅ , 𝐵 } |
| 11 |
2 3 9 10
|
txunii |
⊢ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ∪ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) |
| 12 |
8 11
|
sseqtrrdi |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → 𝑥 ⊆ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑥 ⊆ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
| 14 |
|
ne0i |
⊢ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) → ( 𝑧 × 𝑤 ) ≠ ∅ ) |
| 15 |
14
|
ad2antrl |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 × 𝑤 ) ≠ ∅ ) |
| 16 |
|
xpnz |
⊢ ( ( 𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅ ) ↔ ( 𝑧 × 𝑤 ) ≠ ∅ ) |
| 17 |
15 16
|
sylibr |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅ ) ) |
| 18 |
17
|
simpld |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑧 ≠ ∅ ) |
| 19 |
18
|
neneqd |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ¬ 𝑧 = ∅ ) |
| 20 |
|
simpll |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑧 ∈ { ∅ , 𝐴 } ) |
| 21 |
|
indislem |
⊢ { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } |
| 22 |
20 21
|
eleqtrrdi |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑧 ∈ { ∅ , ( I ‘ 𝐴 ) } ) |
| 23 |
|
elpri |
⊢ ( 𝑧 ∈ { ∅ , ( I ‘ 𝐴 ) } → ( 𝑧 = ∅ ∨ 𝑧 = ( I ‘ 𝐴 ) ) ) |
| 24 |
22 23
|
syl |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 = ∅ ∨ 𝑧 = ( I ‘ 𝐴 ) ) ) |
| 25 |
24
|
ord |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( ¬ 𝑧 = ∅ → 𝑧 = ( I ‘ 𝐴 ) ) ) |
| 26 |
19 25
|
mpd |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑧 = ( I ‘ 𝐴 ) ) |
| 27 |
17
|
simprd |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑤 ≠ ∅ ) |
| 28 |
27
|
neneqd |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ¬ 𝑤 = ∅ ) |
| 29 |
|
simplr |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑤 ∈ { ∅ , 𝐵 } ) |
| 30 |
|
indislem |
⊢ { ∅ , ( I ‘ 𝐵 ) } = { ∅ , 𝐵 } |
| 31 |
29 30
|
eleqtrrdi |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑤 ∈ { ∅ , ( I ‘ 𝐵 ) } ) |
| 32 |
|
elpri |
⊢ ( 𝑤 ∈ { ∅ , ( I ‘ 𝐵 ) } → ( 𝑤 = ∅ ∨ 𝑤 = ( I ‘ 𝐵 ) ) ) |
| 33 |
31 32
|
syl |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑤 = ∅ ∨ 𝑤 = ( I ‘ 𝐵 ) ) ) |
| 34 |
33
|
ord |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( ¬ 𝑤 = ∅ → 𝑤 = ( I ‘ 𝐵 ) ) ) |
| 35 |
28 34
|
mpd |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑤 = ( I ‘ 𝐵 ) ) |
| 36 |
26 35
|
xpeq12d |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 × 𝑤 ) = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
| 37 |
|
simprr |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) |
| 38 |
36 37
|
eqsstrrd |
⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ⊆ 𝑥 ) |
| 39 |
38
|
adantll |
⊢ ( ( ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ⊆ 𝑥 ) |
| 40 |
13 39
|
eqssd |
⊢ ( ( ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
| 41 |
40
|
ex |
⊢ ( ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ) → ( ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 42 |
41
|
rexlimdvva |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 43 |
7 42
|
syld |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( 𝑦 ∈ 𝑥 → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 44 |
43
|
exlimdv |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( ∃ 𝑦 𝑦 ∈ 𝑥 → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 45 |
1 44
|
biimtrid |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( ¬ 𝑥 = ∅ → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 46 |
45
|
orrd |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( 𝑥 = ∅ ∨ 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 47 |
|
vex |
⊢ 𝑥 ∈ V |
| 48 |
47
|
elpr |
⊢ ( 𝑥 ∈ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ↔ ( 𝑥 = ∅ ∨ 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 49 |
46 48
|
sylibr |
⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → 𝑥 ∈ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ) |
| 50 |
49
|
ssriv |
⊢ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ⊆ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } |
| 51 |
9
|
toptopon |
⊢ ( { ∅ , 𝐴 } ∈ Top ↔ { ∅ , 𝐴 } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) ) |
| 52 |
2 51
|
mpbi |
⊢ { ∅ , 𝐴 } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) |
| 53 |
10
|
toptopon |
⊢ ( { ∅ , 𝐵 } ∈ Top ↔ { ∅ , 𝐵 } ∈ ( TopOn ‘ ( I ‘ 𝐵 ) ) ) |
| 54 |
3 53
|
mpbi |
⊢ { ∅ , 𝐵 } ∈ ( TopOn ‘ ( I ‘ 𝐵 ) ) |
| 55 |
|
txtopon |
⊢ ( ( { ∅ , 𝐴 } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) ∧ { ∅ , 𝐵 } ∈ ( TopOn ‘ ( I ‘ 𝐵 ) ) ) → ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∈ ( TopOn ‘ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 56 |
52 54 55
|
mp2an |
⊢ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∈ ( TopOn ‘ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
| 57 |
|
topgele |
⊢ ( ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∈ ( TopOn ‘ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) → ( { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ⊆ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ⊆ 𝒫 ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 58 |
56 57
|
ax-mp |
⊢ ( { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ⊆ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ⊆ 𝒫 ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
| 59 |
58
|
simpli |
⊢ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ⊆ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) |
| 60 |
50 59
|
eqssi |
⊢ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) = { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } |
| 61 |
|
txindislem |
⊢ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) |
| 62 |
61
|
preq2i |
⊢ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } = { ∅ , ( I ‘ ( 𝐴 × 𝐵 ) ) } |
| 63 |
|
indislem |
⊢ { ∅ , ( I ‘ ( 𝐴 × 𝐵 ) ) } = { ∅ , ( 𝐴 × 𝐵 ) } |
| 64 |
60 62 63
|
3eqtri |
⊢ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) = { ∅ , ( 𝐴 × 𝐵 ) } |