| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neq0 |
|
| 2 |
|
indistop |
|
| 3 |
|
indistop |
|
| 4 |
|
eltx |
|
| 5 |
2 3 4
|
mp2an |
|
| 6 |
|
rsp |
|
| 7 |
5 6
|
sylbi |
|
| 8 |
|
elssuni |
|
| 9 |
|
indisuni |
|
| 10 |
|
indisuni |
|
| 11 |
2 3 9 10
|
txunii |
|
| 12 |
8 11
|
sseqtrrdi |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
|
ne0i |
|
| 15 |
14
|
ad2antrl |
|
| 16 |
|
xpnz |
|
| 17 |
15 16
|
sylibr |
|
| 18 |
17
|
simpld |
|
| 19 |
18
|
neneqd |
|
| 20 |
|
simpll |
|
| 21 |
|
indislem |
|
| 22 |
20 21
|
eleqtrrdi |
|
| 23 |
|
elpri |
|
| 24 |
22 23
|
syl |
|
| 25 |
24
|
ord |
|
| 26 |
19 25
|
mpd |
|
| 27 |
17
|
simprd |
|
| 28 |
27
|
neneqd |
|
| 29 |
|
simplr |
|
| 30 |
|
indislem |
|
| 31 |
29 30
|
eleqtrrdi |
|
| 32 |
|
elpri |
|
| 33 |
31 32
|
syl |
|
| 34 |
33
|
ord |
|
| 35 |
28 34
|
mpd |
|
| 36 |
26 35
|
xpeq12d |
|
| 37 |
|
simprr |
|
| 38 |
36 37
|
eqsstrrd |
|
| 39 |
38
|
adantll |
|
| 40 |
13 39
|
eqssd |
|
| 41 |
40
|
ex |
|
| 42 |
41
|
rexlimdvva |
|
| 43 |
7 42
|
syld |
|
| 44 |
43
|
exlimdv |
|
| 45 |
1 44
|
biimtrid |
|
| 46 |
45
|
orrd |
|
| 47 |
|
vex |
|
| 48 |
47
|
elpr |
|
| 49 |
46 48
|
sylibr |
|
| 50 |
49
|
ssriv |
|
| 51 |
9
|
toptopon |
|
| 52 |
2 51
|
mpbi |
|
| 53 |
10
|
toptopon |
|
| 54 |
3 53
|
mpbi |
|
| 55 |
|
txtopon |
|
| 56 |
52 54 55
|
mp2an |
|
| 57 |
|
topgele |
|
| 58 |
56 57
|
ax-mp |
|
| 59 |
58
|
simpli |
|
| 60 |
50 59
|
eqssi |
|
| 61 |
|
txindislem |
|
| 62 |
61
|
preq2i |
|
| 63 |
|
indislem |
|
| 64 |
60 62 63
|
3eqtri |
|