Metamath Proof Explorer


Theorem txindis

Description: The topological product of indiscrete spaces is indiscrete. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion txindis
|- ( { (/) , A } tX { (/) , B } ) = { (/) , ( A X. B ) }

Proof

Step Hyp Ref Expression
1 neq0
 |-  ( -. x = (/) <-> E. y y e. x )
2 indistop
 |-  { (/) , A } e. Top
3 indistop
 |-  { (/) , B } e. Top
4 eltx
 |-  ( ( { (/) , A } e. Top /\ { (/) , B } e. Top ) -> ( x e. ( { (/) , A } tX { (/) , B } ) <-> A. y e. x E. z e. { (/) , A } E. w e. { (/) , B } ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) )
5 2 3 4 mp2an
 |-  ( x e. ( { (/) , A } tX { (/) , B } ) <-> A. y e. x E. z e. { (/) , A } E. w e. { (/) , B } ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) )
6 rsp
 |-  ( A. y e. x E. z e. { (/) , A } E. w e. { (/) , B } ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) -> ( y e. x -> E. z e. { (/) , A } E. w e. { (/) , B } ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) )
7 5 6 sylbi
 |-  ( x e. ( { (/) , A } tX { (/) , B } ) -> ( y e. x -> E. z e. { (/) , A } E. w e. { (/) , B } ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) )
8 elssuni
 |-  ( x e. ( { (/) , A } tX { (/) , B } ) -> x C_ U. ( { (/) , A } tX { (/) , B } ) )
9 indisuni
 |-  ( _I ` A ) = U. { (/) , A }
10 indisuni
 |-  ( _I ` B ) = U. { (/) , B }
11 2 3 9 10 txunii
 |-  ( ( _I ` A ) X. ( _I ` B ) ) = U. ( { (/) , A } tX { (/) , B } )
12 8 11 sseqtrrdi
 |-  ( x e. ( { (/) , A } tX { (/) , B } ) -> x C_ ( ( _I ` A ) X. ( _I ` B ) ) )
13 12 ad2antrr
 |-  ( ( ( x e. ( { (/) , A } tX { (/) , B } ) /\ ( z e. { (/) , A } /\ w e. { (/) , B } ) ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> x C_ ( ( _I ` A ) X. ( _I ` B ) ) )
14 ne0i
 |-  ( y e. ( z X. w ) -> ( z X. w ) =/= (/) )
15 14 ad2antrl
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( z X. w ) =/= (/) )
16 xpnz
 |-  ( ( z =/= (/) /\ w =/= (/) ) <-> ( z X. w ) =/= (/) )
17 15 16 sylibr
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( z =/= (/) /\ w =/= (/) ) )
18 17 simpld
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> z =/= (/) )
19 18 neneqd
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> -. z = (/) )
20 simpll
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> z e. { (/) , A } )
21 indislem
 |-  { (/) , ( _I ` A ) } = { (/) , A }
22 20 21 eleqtrrdi
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> z e. { (/) , ( _I ` A ) } )
23 elpri
 |-  ( z e. { (/) , ( _I ` A ) } -> ( z = (/) \/ z = ( _I ` A ) ) )
24 22 23 syl
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( z = (/) \/ z = ( _I ` A ) ) )
25 24 ord
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( -. z = (/) -> z = ( _I ` A ) ) )
26 19 25 mpd
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> z = ( _I ` A ) )
27 17 simprd
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> w =/= (/) )
28 27 neneqd
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> -. w = (/) )
29 simplr
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> w e. { (/) , B } )
30 indislem
 |-  { (/) , ( _I ` B ) } = { (/) , B }
31 29 30 eleqtrrdi
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> w e. { (/) , ( _I ` B ) } )
32 elpri
 |-  ( w e. { (/) , ( _I ` B ) } -> ( w = (/) \/ w = ( _I ` B ) ) )
33 31 32 syl
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( w = (/) \/ w = ( _I ` B ) ) )
34 33 ord
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( -. w = (/) -> w = ( _I ` B ) ) )
35 28 34 mpd
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> w = ( _I ` B ) )
36 26 35 xpeq12d
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( z X. w ) = ( ( _I ` A ) X. ( _I ` B ) ) )
37 simprr
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( z X. w ) C_ x )
38 36 37 eqsstrrd
 |-  ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( ( _I ` A ) X. ( _I ` B ) ) C_ x )
39 38 adantll
 |-  ( ( ( x e. ( { (/) , A } tX { (/) , B } ) /\ ( z e. { (/) , A } /\ w e. { (/) , B } ) ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( ( _I ` A ) X. ( _I ` B ) ) C_ x )
40 13 39 eqssd
 |-  ( ( ( x e. ( { (/) , A } tX { (/) , B } ) /\ ( z e. { (/) , A } /\ w e. { (/) , B } ) ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> x = ( ( _I ` A ) X. ( _I ` B ) ) )
41 40 ex
 |-  ( ( x e. ( { (/) , A } tX { (/) , B } ) /\ ( z e. { (/) , A } /\ w e. { (/) , B } ) ) -> ( ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) -> x = ( ( _I ` A ) X. ( _I ` B ) ) ) )
42 41 rexlimdvva
 |-  ( x e. ( { (/) , A } tX { (/) , B } ) -> ( E. z e. { (/) , A } E. w e. { (/) , B } ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) -> x = ( ( _I ` A ) X. ( _I ` B ) ) ) )
43 7 42 syld
 |-  ( x e. ( { (/) , A } tX { (/) , B } ) -> ( y e. x -> x = ( ( _I ` A ) X. ( _I ` B ) ) ) )
44 43 exlimdv
 |-  ( x e. ( { (/) , A } tX { (/) , B } ) -> ( E. y y e. x -> x = ( ( _I ` A ) X. ( _I ` B ) ) ) )
45 1 44 syl5bi
 |-  ( x e. ( { (/) , A } tX { (/) , B } ) -> ( -. x = (/) -> x = ( ( _I ` A ) X. ( _I ` B ) ) ) )
46 45 orrd
 |-  ( x e. ( { (/) , A } tX { (/) , B } ) -> ( x = (/) \/ x = ( ( _I ` A ) X. ( _I ` B ) ) ) )
47 vex
 |-  x e. _V
48 47 elpr
 |-  ( x e. { (/) , ( ( _I ` A ) X. ( _I ` B ) ) } <-> ( x = (/) \/ x = ( ( _I ` A ) X. ( _I ` B ) ) ) )
49 46 48 sylibr
 |-  ( x e. ( { (/) , A } tX { (/) , B } ) -> x e. { (/) , ( ( _I ` A ) X. ( _I ` B ) ) } )
50 49 ssriv
 |-  ( { (/) , A } tX { (/) , B } ) C_ { (/) , ( ( _I ` A ) X. ( _I ` B ) ) }
51 9 toptopon
 |-  ( { (/) , A } e. Top <-> { (/) , A } e. ( TopOn ` ( _I ` A ) ) )
52 2 51 mpbi
 |-  { (/) , A } e. ( TopOn ` ( _I ` A ) )
53 10 toptopon
 |-  ( { (/) , B } e. Top <-> { (/) , B } e. ( TopOn ` ( _I ` B ) ) )
54 3 53 mpbi
 |-  { (/) , B } e. ( TopOn ` ( _I ` B ) )
55 txtopon
 |-  ( ( { (/) , A } e. ( TopOn ` ( _I ` A ) ) /\ { (/) , B } e. ( TopOn ` ( _I ` B ) ) ) -> ( { (/) , A } tX { (/) , B } ) e. ( TopOn ` ( ( _I ` A ) X. ( _I ` B ) ) ) )
56 52 54 55 mp2an
 |-  ( { (/) , A } tX { (/) , B } ) e. ( TopOn ` ( ( _I ` A ) X. ( _I ` B ) ) )
57 topgele
 |-  ( ( { (/) , A } tX { (/) , B } ) e. ( TopOn ` ( ( _I ` A ) X. ( _I ` B ) ) ) -> ( { (/) , ( ( _I ` A ) X. ( _I ` B ) ) } C_ ( { (/) , A } tX { (/) , B } ) /\ ( { (/) , A } tX { (/) , B } ) C_ ~P ( ( _I ` A ) X. ( _I ` B ) ) ) )
58 56 57 ax-mp
 |-  ( { (/) , ( ( _I ` A ) X. ( _I ` B ) ) } C_ ( { (/) , A } tX { (/) , B } ) /\ ( { (/) , A } tX { (/) , B } ) C_ ~P ( ( _I ` A ) X. ( _I ` B ) ) )
59 58 simpli
 |-  { (/) , ( ( _I ` A ) X. ( _I ` B ) ) } C_ ( { (/) , A } tX { (/) , B } )
60 50 59 eqssi
 |-  ( { (/) , A } tX { (/) , B } ) = { (/) , ( ( _I ` A ) X. ( _I ` B ) ) }
61 txindislem
 |-  ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) )
62 61 preq2i
 |-  { (/) , ( ( _I ` A ) X. ( _I ` B ) ) } = { (/) , ( _I ` ( A X. B ) ) }
63 indislem
 |-  { (/) , ( _I ` ( A X. B ) ) } = { (/) , ( A X. B ) }
64 60 62 63 3eqtri
 |-  ( { (/) , A } tX { (/) , B } ) = { (/) , ( A X. B ) }