| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noel |
⊢ ¬ ( 𝑥 × 𝑥 ) ∈ ∅ |
| 2 |
|
0ex |
⊢ ∅ ∈ V |
| 3 |
|
eleq2 |
⊢ ( 𝑢 = ∅ → ( ( 𝑥 × 𝑥 ) ∈ 𝑢 ↔ ( 𝑥 × 𝑥 ) ∈ ∅ ) ) |
| 4 |
2 3
|
elab |
⊢ ( ∅ ∈ { 𝑢 ∣ ( 𝑥 × 𝑥 ) ∈ 𝑢 } ↔ ( 𝑥 × 𝑥 ) ∈ ∅ ) |
| 5 |
1 4
|
mtbir |
⊢ ¬ ∅ ∈ { 𝑢 ∣ ( 𝑥 × 𝑥 ) ∈ 𝑢 } |
| 6 |
|
vex |
⊢ 𝑥 ∈ V |
| 7 |
|
velpw |
⊢ ( 𝑢 ∈ 𝒫 𝒫 ( 𝑥 × 𝑥 ) ↔ 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ) |
| 8 |
7
|
abbii |
⊢ { 𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 ( 𝑥 × 𝑥 ) } = { 𝑢 ∣ 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) } |
| 9 |
|
abid2 |
⊢ { 𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 ( 𝑥 × 𝑥 ) } = 𝒫 𝒫 ( 𝑥 × 𝑥 ) |
| 10 |
6 6
|
xpex |
⊢ ( 𝑥 × 𝑥 ) ∈ V |
| 11 |
10
|
pwex |
⊢ 𝒫 ( 𝑥 × 𝑥 ) ∈ V |
| 12 |
11
|
pwex |
⊢ 𝒫 𝒫 ( 𝑥 × 𝑥 ) ∈ V |
| 13 |
9 12
|
eqeltri |
⊢ { 𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 ( 𝑥 × 𝑥 ) } ∈ V |
| 14 |
8 13
|
eqeltrri |
⊢ { 𝑢 ∣ 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) } ∈ V |
| 15 |
|
simp1 |
⊢ ( ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) → 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ) |
| 16 |
15
|
ss2abi |
⊢ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ⊆ { 𝑢 ∣ 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) } |
| 17 |
14 16
|
ssexi |
⊢ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ∈ V |
| 18 |
|
df-ust |
⊢ UnifOn = ( 𝑥 ∈ V ↦ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ) |
| 19 |
18
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ V ∧ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ∈ V ) → ( UnifOn ‘ 𝑥 ) = { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ) |
| 20 |
6 17 19
|
mp2an |
⊢ ( UnifOn ‘ 𝑥 ) = { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } |
| 21 |
|
simp2 |
⊢ ( ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) → ( 𝑥 × 𝑥 ) ∈ 𝑢 ) |
| 22 |
21
|
ss2abi |
⊢ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ⊆ { 𝑢 ∣ ( 𝑥 × 𝑥 ) ∈ 𝑢 } |
| 23 |
20 22
|
eqsstri |
⊢ ( UnifOn ‘ 𝑥 ) ⊆ { 𝑢 ∣ ( 𝑥 × 𝑥 ) ∈ 𝑢 } |
| 24 |
23
|
sseli |
⊢ ( ∅ ∈ ( UnifOn ‘ 𝑥 ) → ∅ ∈ { 𝑢 ∣ ( 𝑥 × 𝑥 ) ∈ 𝑢 } ) |
| 25 |
5 24
|
mto |
⊢ ¬ ∅ ∈ ( UnifOn ‘ 𝑥 ) |
| 26 |
25
|
nex |
⊢ ¬ ∃ 𝑥 ∅ ∈ ( UnifOn ‘ 𝑥 ) |
| 27 |
18
|
funmpt2 |
⊢ Fun UnifOn |
| 28 |
|
elunirn |
⊢ ( Fun UnifOn → ( ∅ ∈ ∪ ran UnifOn ↔ ∃ 𝑥 ∈ dom UnifOn ∅ ∈ ( UnifOn ‘ 𝑥 ) ) ) |
| 29 |
27 28
|
ax-mp |
⊢ ( ∅ ∈ ∪ ran UnifOn ↔ ∃ 𝑥 ∈ dom UnifOn ∅ ∈ ( UnifOn ‘ 𝑥 ) ) |
| 30 |
|
ustfn |
⊢ UnifOn Fn V |
| 31 |
|
fndm |
⊢ ( UnifOn Fn V → dom UnifOn = V ) |
| 32 |
30 31
|
ax-mp |
⊢ dom UnifOn = V |
| 33 |
32
|
rexeqi |
⊢ ( ∃ 𝑥 ∈ dom UnifOn ∅ ∈ ( UnifOn ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ V ∅ ∈ ( UnifOn ‘ 𝑥 ) ) |
| 34 |
|
rexv |
⊢ ( ∃ 𝑥 ∈ V ∅ ∈ ( UnifOn ‘ 𝑥 ) ↔ ∃ 𝑥 ∅ ∈ ( UnifOn ‘ 𝑥 ) ) |
| 35 |
29 33 34
|
3bitri |
⊢ ( ∅ ∈ ∪ ran UnifOn ↔ ∃ 𝑥 ∅ ∈ ( UnifOn ‘ 𝑥 ) ) |
| 36 |
26 35
|
mtbir |
⊢ ¬ ∅ ∈ ∪ ran UnifOn |