| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfnf1 |
⊢ Ⅎ 𝑦 Ⅎ 𝑦 𝜑 |
| 2 |
1
|
nfal |
⊢ Ⅎ 𝑦 ∀ 𝑥 Ⅎ 𝑦 𝜑 |
| 3 |
|
equsb3 |
⊢ ( [ 𝑣 / 𝑥 ] 𝑥 = 𝑢 ↔ 𝑣 = 𝑢 ) |
| 4 |
3
|
sblbis |
⊢ ( [ 𝑣 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ( [ 𝑣 / 𝑥 ] 𝜑 ↔ 𝑣 = 𝑢 ) ) |
| 5 |
|
wl-nfsbtv |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 [ 𝑣 / 𝑥 ] 𝜑 ) |
| 6 |
|
nfvd |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 𝑣 = 𝑢 ) |
| 7 |
5 6
|
nfbid |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 ( [ 𝑣 / 𝑥 ] 𝜑 ↔ 𝑣 = 𝑢 ) ) |
| 8 |
4 7
|
nfxfrd |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 [ 𝑣 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ) |
| 9 |
|
sbequ |
⊢ ( 𝑣 = 𝑦 → ( [ 𝑣 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ) ) |
| 10 |
9
|
a1i |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( 𝑣 = 𝑦 → ( [ 𝑣 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ) ) ) |
| 11 |
2 8 10
|
cbvaldw |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∀ 𝑣 [ 𝑣 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ) ) |
| 12 |
|
sb8v |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ∀ 𝑣 [ 𝑣 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ) |
| 13 |
12
|
bicomi |
⊢ ( ∀ 𝑣 [ 𝑣 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑢 ) ) |
| 14 |
|
equsb3 |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑢 ↔ 𝑦 = 𝑢 ) |
| 15 |
14
|
sblbis |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑢 ) ) |
| 16 |
15
|
albii |
⊢ ( ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑢 ) ) |
| 17 |
11 13 16
|
3bitr3g |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑢 ) ) ) |
| 18 |
17
|
exbidv |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃ 𝑢 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑢 ) ↔ ∃ 𝑢 ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑢 ) ) ) |
| 19 |
|
eu6 |
⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑢 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑢 ) ) |
| 20 |
|
eu6 |
⊢ ( ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑢 ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 = 𝑢 ) ) |
| 21 |
18 19 20
|
3bitr4g |
⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |