| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimpnfxnegmnf2.j | ⊢ Ⅎ 𝑗 𝐹 | 
						
							| 2 |  | xlimpnfxnegmnf2.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | xlimpnfxnegmnf2.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 4 |  | xlimpnfxnegmnf2.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 5 | 1 3 4 | xlimpnfxnegmnf | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 6 | 1 2 3 4 | xlimpnf | ⊢ ( 𝜑  →  ( 𝐹 ~~>* +∞  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 7 |  | nfmpt1 | ⊢ Ⅎ 𝑗 ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 8 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 9 | 8 | xnegcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  -𝑒 ( 𝐹 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑘 -𝑒 ( 𝐹 ‘ 𝑗 ) | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑗 𝑘 | 
						
							| 12 | 1 11 | nffv | ⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑘 ) | 
						
							| 13 | 12 | nfxneg | ⊢ Ⅎ 𝑗 -𝑒 ( 𝐹 ‘ 𝑘 ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 15 | 14 | xnegeqd | ⊢ ( 𝑗  =  𝑘  →  -𝑒 ( 𝐹 ‘ 𝑗 )  =  -𝑒 ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 16 | 10 13 15 | cbvmpt | ⊢ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑘  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 17 | 9 16 | fmptd | ⊢ ( 𝜑  →  ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) : 𝑍 ⟶ ℝ* ) | 
						
							| 18 | 7 2 3 17 | xlimmnf | ⊢ ( 𝜑  →  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ~~>* -∞  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 19 | 3 | uztrn2 | ⊢ ( ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑗  ∈  𝑍 ) | 
						
							| 20 |  | xnegex | ⊢ -𝑒 ( 𝐹 ‘ 𝑗 )  ∈  V | 
						
							| 21 |  | fvmpt4 | ⊢ ( ( 𝑗  ∈  𝑍  ∧  -𝑒 ( 𝐹 ‘ 𝑗 )  ∈  V )  →  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  =  -𝑒 ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 22 | 20 21 | mpan2 | ⊢ ( 𝑗  ∈  𝑍  →  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  =  -𝑒 ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 23 | 22 | breq1d | ⊢ ( 𝑗  ∈  𝑍  →  ( ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 24 | 19 23 | syl | ⊢ ( ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 25 | 24 | ralbidva | ⊢ ( 𝑘  ∈  𝑍  →  ( ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 26 | 25 | rexbiia | ⊢ ( ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 27 | 26 | ralbii | ⊢ ( ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 28 | 18 27 | bitrdi | ⊢ ( 𝜑  →  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ~~>* -∞  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 29 | 5 6 28 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝐹 ~~>* +∞  ↔  ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ~~>* -∞ ) ) |