Step |
Hyp |
Ref |
Expression |
1 |
|
xlimpnfxnegmnf2.j |
⊢ Ⅎ 𝑗 𝐹 |
2 |
|
xlimpnfxnegmnf2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
xlimpnfxnegmnf2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
xlimpnfxnegmnf2.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
5 |
1 3 4
|
xlimpnfxnegmnf |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
6 |
1 2 3 4
|
xlimpnf |
⊢ ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
7 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) |
8 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
9 |
8
|
xnegcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → -𝑒 ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑘 -𝑒 ( 𝐹 ‘ 𝑗 ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑘 |
12 |
1 11
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑘 ) |
13 |
12
|
nfxneg |
⊢ Ⅎ 𝑗 -𝑒 ( 𝐹 ‘ 𝑘 ) |
14 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ) |
15 |
14
|
xnegeqd |
⊢ ( 𝑗 = 𝑘 → -𝑒 ( 𝐹 ‘ 𝑗 ) = -𝑒 ( 𝐹 ‘ 𝑘 ) ) |
16 |
10 13 15
|
cbvmpt |
⊢ ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) = ( 𝑘 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) |
17 |
9 16
|
fmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) : 𝑍 ⟶ ℝ* ) |
18 |
7 2 3 17
|
xlimmnf |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) ≤ 𝑥 ) ) |
19 |
3
|
uztrn2 |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ 𝑍 ) |
20 |
|
xnegex |
⊢ -𝑒 ( 𝐹 ‘ 𝑗 ) ∈ V |
21 |
|
fvmpt4 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ -𝑒 ( 𝐹 ‘ 𝑗 ) ∈ V ) → ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) = -𝑒 ( 𝐹 ‘ 𝑗 ) ) |
22 |
20 21
|
mpan2 |
⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) = -𝑒 ( 𝐹 ‘ 𝑗 ) ) |
23 |
22
|
breq1d |
⊢ ( 𝑗 ∈ 𝑍 → ( ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) ≤ 𝑥 ↔ -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
24 |
19 23
|
syl |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) ≤ 𝑥 ↔ -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
25 |
24
|
ralbidva |
⊢ ( 𝑘 ∈ 𝑍 → ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
26 |
25
|
rexbiia |
⊢ ( ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) ≤ 𝑥 ↔ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
27 |
26
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) ≤ 𝑥 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
28 |
18 27
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
29 |
5 6 28
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐹 ~~>* +∞ ↔ ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ~~>* -∞ ) ) |