Metamath Proof Explorer


Theorem xlimpnfxnegmnf2

Description: A sequence converges to +oo if and only if its negation converges to -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimpnfxnegmnf2.j _ j F
xlimpnfxnegmnf2.m φ M
xlimpnfxnegmnf2.z Z = M
xlimpnfxnegmnf2.f φ F : Z *
Assertion xlimpnfxnegmnf2 φ F * +∞ j Z F j * −∞

Proof

Step Hyp Ref Expression
1 xlimpnfxnegmnf2.j _ j F
2 xlimpnfxnegmnf2.m φ M
3 xlimpnfxnegmnf2.z Z = M
4 xlimpnfxnegmnf2.f φ F : Z *
5 1 3 4 xlimpnfxnegmnf φ x k Z j k x F j x k Z j k F j x
6 1 2 3 4 xlimpnf φ F * +∞ x k Z j k x F j
7 nfmpt1 _ j j Z F j
8 4 ffvelrnda φ k Z F k *
9 8 xnegcld φ k Z F k *
10 nfcv _ k F j
11 nfcv _ j k
12 1 11 nffv _ j F k
13 12 nfxneg _ j F k
14 fveq2 j = k F j = F k
15 14 xnegeqd j = k F j = F k
16 10 13 15 cbvmpt j Z F j = k Z F k
17 9 16 fmptd φ j Z F j : Z *
18 7 2 3 17 xlimmnf φ j Z F j * −∞ x k Z j k j Z F j j x
19 3 uztrn2 k Z j k j Z
20 xnegex F j V
21 fvmpt4 j Z F j V j Z F j j = F j
22 20 21 mpan2 j Z j Z F j j = F j
23 22 breq1d j Z j Z F j j x F j x
24 19 23 syl k Z j k j Z F j j x F j x
25 24 ralbidva k Z j k j Z F j j x j k F j x
26 25 rexbiia k Z j k j Z F j j x k Z j k F j x
27 26 ralbii x k Z j k j Z F j j x x k Z j k F j x
28 18 27 bitrdi φ j Z F j * −∞ x k Z j k F j x
29 5 6 28 3bitr4d φ F * +∞ j Z F j * −∞