MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf33lem Unicode version

Theorem isf33lem 8767
Description: Lemma for isfin3-3 8769. (Contributed by Stefan O'Rear, 17-May-2015.)
Assertion
Ref Expression
isf33lem
Distinct variable group:   , ,

Proof of Theorem isf33lem
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfin32i 8766 . . . 4
2 fveq1 5870 . . . . . . . . . . 11
3 fveq1 5870 . . . . . . . . . . 11
42, 3sseq12d 3532 . . . . . . . . . 10
54ralbidv 2896 . . . . . . . . 9
6 rneq 5233 . . . . . . . . . . 11
76inteqd 4291 . . . . . . . . . 10
87, 6eleq12d 2539 . . . . . . . . 9
95, 8imbi12d 320 . . . . . . . 8
109cbvralv 3084 . . . . . . 7
11 pweq 4015 . . . . . . . . 9
1211oveq1d 6311 . . . . . . . 8
1312raleqdv 3060 . . . . . . 7
1410, 13syl5bb 257 . . . . . 6
1514cbvabv 2600 . . . . 5
1615isf32lem12 8765 . . . 4
171, 16mpd 15 . . 3
1810abbii 2591 . . . 4
1918fin23lem41 8753 . . 3
2017, 19impbii 188 . 2
2120eqriv 2453 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  =wceq 1395  e.wcel 1818  {cab 2442  A.wral 2807  C_wss 3475  ~Pcpw 4012  |^|cint 4286   class class class wbr 4452  succsuc 4885  rancrn 5005  `cfv 5593  (class class class)co 6296   com 6700   cmap 7439   cwdom 8004   cfin3 8682
This theorem is referenced by:  isfin3-2  8768  isfin3-3  8769  fin23  8790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-int 4287  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-se 4844  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-isom 5602  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6701  df-1st 6800  df-2nd 6801  df-recs 7061  df-rdg 7095  df-seqom 7132  df-1o 7149  df-oadd 7153  df-er 7330  df-map 7441  df-en 7537  df-dom 7538  df-sdom 7539  df-fin 7540  df-wdom 8006  df-card 8341  df-fin4 8688  df-fin3 8689
  Copyright terms: Public domain W3C validator