Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf34lem5 | Unicode version |
Description: Lemma for isfin3-4 8783. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
compss.a |
Ref | Expression |
---|---|
isf34lem5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5353 | . . . . . . 7 | |
2 | compss.a | . . . . . . . . . 10 | |
3 | 2 | isf34lem2 8774 | . . . . . . . . 9 |
4 | 3 | adantr 465 | . . . . . . . 8 |
5 | frn 5742 | . . . . . . . 8 | |
6 | 4, 5 | syl 16 | . . . . . . 7 |
7 | 1, 6 | syl5ss 3514 | . . . . . 6 |
8 | simprl 756 | . . . . . . . . . 10 | |
9 | fdm 5740 | . . . . . . . . . . 11 | |
10 | 4, 9 | syl 16 | . . . . . . . . . 10 |
11 | 8, 10 | sseqtr4d 3540 | . . . . . . . . 9 |
12 | dfss1 3702 | . . . . . . . . 9 | |
13 | 11, 12 | sylib 196 | . . . . . . . 8 |
14 | simprr 757 | . . . . . . . 8 | |
15 | 13, 14 | eqnetrd 2750 | . . . . . . 7 |
16 | imadisj 5361 | . . . . . . . 8 | |
17 | 16 | necon3bii 2725 | . . . . . . 7 |
18 | 15, 17 | sylibr 212 | . . . . . 6 |
19 | 7, 18 | jca 532 | . . . . 5 |
20 | 2 | isf34lem4 8778 | . . . . 5 |
21 | 19, 20 | syldan 470 | . . . 4 |
22 | 2 | isf34lem3 8776 | . . . . . 6 |
23 | 22 | adantrr 716 | . . . . 5 |
24 | 23 | inteqd 4291 | . . . 4 |
25 | 21, 24 | eqtrd 2498 | . . 3 |
26 | 25 | fveq2d 5875 | . 2 |
27 | 2 | compsscnv 8772 | . . . 4 |
28 | 27 | fveq1i 5872 | . . 3 |
29 | 2 | compssiso 8775 | . . . . . 6 |
30 | isof1o 6221 | . . . . . 6 | |
31 | 29, 30 | syl 16 | . . . . 5 |
32 | 31 | adantr 465 | . . . 4 |
33 | sspwuni 4416 | . . . . . 6 | |
34 | 7, 33 | sylib 196 | . . . . 5 |
35 | elpw2g 4615 | . . . . . 6 | |
36 | 35 | adantr 465 | . . . . 5 |
37 | 34, 36 | mpbird 232 | . . . 4 |
38 | f1ocnvfv1 6182 | . . . 4 | |
39 | 32, 37, 38 | syl2anc 661 | . . 3 |
40 | 28, 39 | syl5eqr 2512 | . 2 |
41 | 26, 40 | eqtr3d 2500 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 \ cdif 3472 i^i cin 3474
C_ wss 3475 c0 3784 ~P cpw 4012 U. cuni 4249
|^| cint 4286
e. cmpt 4510 `' ccnv 5003 dom cdm 5004
ran crn 5005 " cima 5007 --> wf 5589
-1-1-onto-> wf1o 5592
` cfv 5593 Isom wiso 5594 crpss 6579 |
This theorem is referenced by: isf34lem7 8780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-rpss 6580 |
Copyright terms: Public domain | W3C validator |