Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf34lem7 | Unicode version |
Description: Lemma for isfin3-4 8783. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
compss.a |
Ref | Expression |
---|---|
isf34lem7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | compss.a | . . . . . . 7 | |
2 | 1 | isf34lem2 8774 | . . . . . 6 |
3 | 2 | adantr 465 | . . . . 5 |
4 | 3 | 3adant3 1016 | . . . 4 |
5 | ffn 5736 | . . . 4 | |
6 | 4, 5 | syl 16 | . . 3 |
7 | imassrn 5353 | . . . 4 | |
8 | frn 5742 | . . . . . 6 | |
9 | 3, 8 | syl 16 | . . . . 5 |
10 | 9 | 3adant3 1016 | . . . 4 |
11 | 7, 10 | syl5ss 3514 | . . 3 |
12 | simp1 996 | . . . . 5 | |
13 | fco 5746 | . . . . . . 7 | |
14 | 2, 13 | sylan 471 | . . . . . 6 |
15 | 14 | 3adant3 1016 | . . . . 5 |
16 | sscon 3637 | . . . . . . . 8 | |
17 | simpr 461 | . . . . . . . . . . 11 | |
18 | peano2 6720 | . . . . . . . . . . 11 | |
19 | fvco3 5950 | . . . . . . . . . . 11 | |
20 | 17, 18, 19 | syl2an 477 | . . . . . . . . . 10 |
21 | simpll 753 | . . . . . . . . . . 11 | |
22 | ffvelrn 6029 | . . . . . . . . . . . . 13 | |
23 | 17, 18, 22 | syl2an 477 | . . . . . . . . . . . 12 |
24 | 23 | elpwid 4022 | . . . . . . . . . . 11 |
25 | 1 | isf34lem1 8773 | . . . . . . . . . . 11 |
26 | 21, 24, 25 | syl2anc 661 | . . . . . . . . . 10 |
27 | 20, 26 | eqtrd 2498 | . . . . . . . . 9 |
28 | fvco3 5950 | . . . . . . . . . . 11 | |
29 | 28 | adantll 713 | . . . . . . . . . 10 |
30 | ffvelrn 6029 | . . . . . . . . . . . . 13 | |
31 | 30 | adantll 713 | . . . . . . . . . . . 12 |
32 | 31 | elpwid 4022 | . . . . . . . . . . 11 |
33 | 1 | isf34lem1 8773 | . . . . . . . . . . 11 |
34 | 21, 32, 33 | syl2anc 661 | . . . . . . . . . 10 |
35 | 29, 34 | eqtrd 2498 | . . . . . . . . 9 |
36 | 27, 35 | sseq12d 3532 | . . . . . . . 8 |
37 | 16, 36 | syl5ibr 221 | . . . . . . 7 |
38 | 37 | ralimdva 2865 | . . . . . 6 |
39 | 38 | 3impia 1193 | . . . . 5 |
40 | fin33i 8770 | . . . . 5 | |
41 | 12, 15, 39, 40 | syl3anc 1228 | . . . 4 |
42 | rnco2 5519 | . . . . 5 | |
43 | 42 | inteqi 4290 | . . . 4 |
44 | 41, 43, 42 | 3eltr3g 2561 | . . 3 |
45 | fnfvima 6150 | . . 3 | |
46 | 6, 11, 44, 45 | syl3anc 1228 | . 2 |
47 | simpl 457 | . . . . . 6 | |
48 | 7, 9 | syl5ss 3514 | . . . . . 6 |
49 | incom 3690 | . . . . . . . . 9 | |
50 | frn 5742 | . . . . . . . . . . . 12 | |
51 | 50 | adantl 466 | . . . . . . . . . . 11 |
52 | fdm 5740 | . . . . . . . . . . . 12 | |
53 | 3, 52 | syl 16 | . . . . . . . . . . 11 |
54 | 51, 53 | sseqtr4d 3540 | . . . . . . . . . 10 |
55 | df-ss 3489 | . . . . . . . . . 10 | |
56 | 54, 55 | sylib 196 | . . . . . . . . 9 |
57 | 49, 56 | syl5eq 2510 | . . . . . . . 8 |
58 | fdm 5740 | . . . . . . . . . . 11 | |
59 | 58 | adantl 466 | . . . . . . . . . 10 |
60 | peano1 6719 | . . . . . . . . . . 11 | |
61 | ne0i 3790 | . . . . . . . . . . 11 | |
62 | 60, 61 | mp1i 12 | . . . . . . . . . 10 |
63 | 59, 62 | eqnetrd 2750 | . . . . . . . . 9 |
64 | dm0rn0 5224 | . . . . . . . . . 10 | |
65 | 64 | necon3bii 2725 | . . . . . . . . 9 |
66 | 63, 65 | sylib 196 | . . . . . . . 8 |
67 | 57, 66 | eqnetrd 2750 | . . . . . . 7 |
68 | imadisj 5361 | . . . . . . . 8 | |
69 | 68 | necon3bii 2725 | . . . . . . 7 |
70 | 67, 69 | sylibr 212 | . . . . . 6 |
71 | 1 | isf34lem5 8779 | . . . . . 6 |
72 | 47, 48, 70, 71 | syl12anc 1226 | . . . . 5 |
73 | 1 | isf34lem3 8776 | . . . . . . 7 |
74 | 47, 51, 73 | syl2anc 661 | . . . . . 6 |
75 | 74 | unieqd 4259 | . . . . 5 |
76 | 72, 75 | eqtrd 2498 | . . . 4 |
77 | 76, 74 | eleq12d 2539 | . . 3 |
78 | 77 | 3adant3 1016 | . 2 |
79 | 46, 78 | mpbid 210 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
\ cdif 3472 i^i cin 3474 C_ wss 3475
c0 3784 ~P cpw 4012 U. cuni 4249
|^| cint 4286
e. cmpt 4510 suc csuc 4885 dom cdm 5004
ran crn 5005 " cima 5007 o. ccom 5008
Fn wfn 5588 --> wf 5589 ` cfv 5593
com 6700
cfin3 8682 |
This theorem is referenced by: isf34lem6 8781 fin34i 8782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-rpss 6580 df-om 6701 df-recs 7061 df-rdg 7095 df-1o 7149 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-wdom 8006 df-card 8341 df-fin4 8688 df-fin3 8689 |
Copyright terms: Public domain | W3C validator |