Step |
Hyp |
Ref |
Expression |
1 |
|
compss.a |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) |
2 |
1
|
isf34lem2 |
⊢ ( 𝐴 ∈ FinIII → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
5 |
4
|
ffnd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → 𝐹 Fn 𝒫 𝐴 ) |
6 |
|
imassrn |
⊢ ( 𝐹 “ ran 𝐺 ) ⊆ ran 𝐹 |
7 |
3
|
frnd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐹 ⊆ 𝒫 𝐴 ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ran 𝐹 ⊆ 𝒫 𝐴 ) |
9 |
6 8
|
sstrid |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 ) |
10 |
|
simp1 |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → 𝐴 ∈ FinIII ) |
11 |
|
fco |
⊢ ( ( 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ∘ 𝐺 ) : ω ⟶ 𝒫 𝐴 ) |
12 |
2 11
|
sylan |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ∘ 𝐺 ) : ω ⟶ 𝒫 𝐴 ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( 𝐹 ∘ 𝐺 ) : ω ⟶ 𝒫 𝐴 ) |
14 |
|
sscon |
⊢ ( ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) |
15 |
|
simpr |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → 𝐺 : ω ⟶ 𝒫 𝐴 ) |
16 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
17 |
|
fvco3 |
⊢ ( ( 𝐺 : ω ⟶ 𝒫 𝐴 ∧ suc 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) |
18 |
15 16 17
|
syl2an |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) |
19 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → 𝐴 ∈ FinIII ) |
20 |
|
ffvelrn |
⊢ ( ( 𝐺 : ω ⟶ 𝒫 𝐴 ∧ suc 𝑦 ∈ ω ) → ( 𝐺 ‘ suc 𝑦 ) ∈ 𝒫 𝐴 ) |
21 |
15 16 20
|
syl2an |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ suc 𝑦 ) ∈ 𝒫 𝐴 ) |
22 |
21
|
elpwid |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ suc 𝑦 ) ⊆ 𝐴 ) |
23 |
1
|
isf34lem1 |
⊢ ( ( 𝐴 ∈ FinIII ∧ ( 𝐺 ‘ suc 𝑦 ) ⊆ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) = ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ) |
24 |
19 22 23
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) = ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ) |
25 |
18 24
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) = ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ) |
26 |
|
fvco3 |
⊢ ( ( 𝐺 : ω ⟶ 𝒫 𝐴 ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
27 |
26
|
adantll |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
28 |
|
ffvelrn |
⊢ ( ( 𝐺 : ω ⟶ 𝒫 𝐴 ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝒫 𝐴 ) |
29 |
28
|
adantll |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝒫 𝐴 ) |
30 |
29
|
elpwid |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ 𝑦 ) ⊆ 𝐴 ) |
31 |
1
|
isf34lem1 |
⊢ ( ( 𝐴 ∈ FinIII ∧ ( 𝐺 ‘ 𝑦 ) ⊆ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) = ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) |
32 |
19 30 31
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) = ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) |
33 |
27 32
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) |
34 |
25 33
|
sseq12d |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ↔ ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝐺 ‘ 𝑦 ) ) ) ) |
35 |
14 34
|
syl5ibr |
⊢ ( ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
36 |
35
|
ralimdva |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
37 |
36
|
3impia |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) |
38 |
|
fin33i |
⊢ ( ( 𝐴 ∈ FinIII ∧ ( 𝐹 ∘ 𝐺 ) : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) → ∩ ran ( 𝐹 ∘ 𝐺 ) ∈ ran ( 𝐹 ∘ 𝐺 ) ) |
39 |
10 13 37 38
|
syl3anc |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ∩ ran ( 𝐹 ∘ 𝐺 ) ∈ ran ( 𝐹 ∘ 𝐺 ) ) |
40 |
|
rnco2 |
⊢ ran ( 𝐹 ∘ 𝐺 ) = ( 𝐹 “ ran 𝐺 ) |
41 |
40
|
inteqi |
⊢ ∩ ran ( 𝐹 ∘ 𝐺 ) = ∩ ( 𝐹 “ ran 𝐺 ) |
42 |
39 41 40
|
3eltr3g |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ∩ ( 𝐹 “ ran 𝐺 ) ∈ ( 𝐹 “ ran 𝐺 ) ) |
43 |
|
fnfvima |
⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 ∧ ∩ ( 𝐹 “ ran 𝐺 ) ∈ ( 𝐹 “ ran 𝐺 ) ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ) |
44 |
5 9 42 43
|
syl3anc |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ) |
45 |
|
simpl |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → 𝐴 ∈ FinIII ) |
46 |
6 7
|
sstrid |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 ) |
47 |
|
incom |
⊢ ( dom 𝐹 ∩ ran 𝐺 ) = ( ran 𝐺 ∩ dom 𝐹 ) |
48 |
|
frn |
⊢ ( 𝐺 : ω ⟶ 𝒫 𝐴 → ran 𝐺 ⊆ 𝒫 𝐴 ) |
49 |
48
|
adantl |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐺 ⊆ 𝒫 𝐴 ) |
50 |
3
|
fdmd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → dom 𝐹 = 𝒫 𝐴 ) |
51 |
49 50
|
sseqtrrd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐺 ⊆ dom 𝐹 ) |
52 |
|
df-ss |
⊢ ( ran 𝐺 ⊆ dom 𝐹 ↔ ( ran 𝐺 ∩ dom 𝐹 ) = ran 𝐺 ) |
53 |
51 52
|
sylib |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( ran 𝐺 ∩ dom 𝐹 ) = ran 𝐺 ) |
54 |
47 53
|
eqtrid |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( dom 𝐹 ∩ ran 𝐺 ) = ran 𝐺 ) |
55 |
|
fdm |
⊢ ( 𝐺 : ω ⟶ 𝒫 𝐴 → dom 𝐺 = ω ) |
56 |
55
|
adantl |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → dom 𝐺 = ω ) |
57 |
|
peano1 |
⊢ ∅ ∈ ω |
58 |
|
ne0i |
⊢ ( ∅ ∈ ω → ω ≠ ∅ ) |
59 |
57 58
|
mp1i |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ω ≠ ∅ ) |
60 |
56 59
|
eqnetrd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → dom 𝐺 ≠ ∅ ) |
61 |
|
dm0rn0 |
⊢ ( dom 𝐺 = ∅ ↔ ran 𝐺 = ∅ ) |
62 |
61
|
necon3bii |
⊢ ( dom 𝐺 ≠ ∅ ↔ ran 𝐺 ≠ ∅ ) |
63 |
60 62
|
sylib |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐺 ≠ ∅ ) |
64 |
54 63
|
eqnetrd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( dom 𝐹 ∩ ran 𝐺 ) ≠ ∅ ) |
65 |
|
imadisj |
⊢ ( ( 𝐹 “ ran 𝐺 ) = ∅ ↔ ( dom 𝐹 ∩ ran 𝐺 ) = ∅ ) |
66 |
65
|
necon3bii |
⊢ ( ( 𝐹 “ ran 𝐺 ) ≠ ∅ ↔ ( dom 𝐹 ∩ ran 𝐺 ) ≠ ∅ ) |
67 |
64 66
|
sylibr |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 “ ran 𝐺 ) ≠ ∅ ) |
68 |
1
|
isf34lem5 |
⊢ ( ( 𝐴 ∈ FinIII ∧ ( ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 ∧ ( 𝐹 “ ran 𝐺 ) ≠ ∅ ) ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) = ∪ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ) |
69 |
45 46 67 68
|
syl12anc |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) = ∪ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ) |
70 |
1
|
isf34lem3 |
⊢ ( ( 𝐴 ∈ FinIII ∧ ran 𝐺 ⊆ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) = ran 𝐺 ) |
71 |
45 49 70
|
syl2anc |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) = ran 𝐺 ) |
72 |
71
|
unieqd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ∪ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) = ∪ ran 𝐺 ) |
73 |
69 72
|
eqtrd |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) = ∪ ran 𝐺 ) |
74 |
73 71
|
eleq12d |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ) → ( ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ↔ ∪ ran 𝐺 ∈ ran 𝐺 ) ) |
75 |
74
|
3adant3 |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( ( 𝐹 ‘ ∩ ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ↔ ∪ ran 𝐺 ∈ ran 𝐺 ) ) |
76 |
44 75
|
mpbid |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ∪ ran 𝐺 ∈ ran 𝐺 ) |