Metamath Proof Explorer


Theorem isf34lem7

Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Hypothesis compss.a 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑥 ) )
Assertion isf34lem7 ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ran 𝐺 ∈ ran 𝐺 )

Proof

Step Hyp Ref Expression
1 compss.a 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴𝑥 ) )
2 1 isf34lem2 ( 𝐴 ∈ FinIII𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 )
3 2 adantr ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 )
4 3 3adant3 ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 )
5 4 ffnd ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → 𝐹 Fn 𝒫 𝐴 )
6 imassrn ( 𝐹 “ ran 𝐺 ) ⊆ ran 𝐹
7 3 frnd ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐹 ⊆ 𝒫 𝐴 )
8 7 3adant3 ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ran 𝐹 ⊆ 𝒫 𝐴 )
9 6 8 sstrid ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 )
10 simp1 ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → 𝐴 ∈ FinIII )
11 fco ( ( 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹𝐺 ) : ω ⟶ 𝒫 𝐴 )
12 2 11 sylan ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹𝐺 ) : ω ⟶ 𝒫 𝐴 )
13 12 3adant3 ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( 𝐹𝐺 ) : ω ⟶ 𝒫 𝐴 )
14 sscon ( ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝐺𝑦 ) ) )
15 simpr ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → 𝐺 : ω ⟶ 𝒫 𝐴 )
16 peano2 ( 𝑦 ∈ ω → suc 𝑦 ∈ ω )
17 fvco3 ( ( 𝐺 : ω ⟶ 𝒫 𝐴 ∧ suc 𝑦 ∈ ω ) → ( ( 𝐹𝐺 ) ‘ suc 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) )
18 15 16 17 syl2an ( ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹𝐺 ) ‘ suc 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) )
19 simpll ( ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → 𝐴 ∈ FinIII )
20 ffvelrn ( ( 𝐺 : ω ⟶ 𝒫 𝐴 ∧ suc 𝑦 ∈ ω ) → ( 𝐺 ‘ suc 𝑦 ) ∈ 𝒫 𝐴 )
21 15 16 20 syl2an ( ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ suc 𝑦 ) ∈ 𝒫 𝐴 )
22 21 elpwid ( ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺 ‘ suc 𝑦 ) ⊆ 𝐴 )
23 1 isf34lem1 ( ( 𝐴 ∈ FinIII ∧ ( 𝐺 ‘ suc 𝑦 ) ⊆ 𝐴 ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) = ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) )
24 19 22 23 syl2anc ( ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) = ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) )
25 18 24 eqtrd ( ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹𝐺 ) ‘ suc 𝑦 ) = ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) )
26 fvco3 ( ( 𝐺 : ω ⟶ 𝒫 𝐴𝑦 ∈ ω ) → ( ( 𝐹𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺𝑦 ) ) )
27 26 adantll ( ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺𝑦 ) ) )
28 ffvelrn ( ( 𝐺 : ω ⟶ 𝒫 𝐴𝑦 ∈ ω ) → ( 𝐺𝑦 ) ∈ 𝒫 𝐴 )
29 28 adantll ( ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺𝑦 ) ∈ 𝒫 𝐴 )
30 29 elpwid ( ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐺𝑦 ) ⊆ 𝐴 )
31 1 isf34lem1 ( ( 𝐴 ∈ FinIII ∧ ( 𝐺𝑦 ) ⊆ 𝐴 ) → ( 𝐹 ‘ ( 𝐺𝑦 ) ) = ( 𝐴 ∖ ( 𝐺𝑦 ) ) )
32 19 30 31 syl2anc ( ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ ( 𝐺𝑦 ) ) = ( 𝐴 ∖ ( 𝐺𝑦 ) ) )
33 27 32 eqtrd ( ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹𝐺 ) ‘ 𝑦 ) = ( 𝐴 ∖ ( 𝐺𝑦 ) ) )
34 25 33 sseq12d ( ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( ( 𝐹𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹𝐺 ) ‘ 𝑦 ) ↔ ( 𝐴 ∖ ( 𝐺 ‘ suc 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝐺𝑦 ) ) ) )
35 14 34 syl5ibr ( ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) ∧ 𝑦 ∈ ω ) → ( ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( ( 𝐹𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹𝐺 ) ‘ 𝑦 ) ) )
36 35 ralimdva ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ( ∀ 𝑦 ∈ ω ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ∀ 𝑦 ∈ ω ( ( 𝐹𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹𝐺 ) ‘ 𝑦 ) ) )
37 36 3impia ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ∀ 𝑦 ∈ ω ( ( 𝐹𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹𝐺 ) ‘ 𝑦 ) )
38 fin33i ( ( 𝐴 ∈ FinIII ∧ ( 𝐹𝐺 ) : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( ( 𝐹𝐺 ) ‘ suc 𝑦 ) ⊆ ( ( 𝐹𝐺 ) ‘ 𝑦 ) ) → ran ( 𝐹𝐺 ) ∈ ran ( 𝐹𝐺 ) )
39 10 13 37 38 syl3anc ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ran ( 𝐹𝐺 ) ∈ ran ( 𝐹𝐺 ) )
40 rnco2 ran ( 𝐹𝐺 ) = ( 𝐹 “ ran 𝐺 )
41 40 inteqi ran ( 𝐹𝐺 ) = ( 𝐹 “ ran 𝐺 )
42 39 41 40 3eltr3g ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( 𝐹 “ ran 𝐺 ) ∈ ( 𝐹 “ ran 𝐺 ) )
43 fnfvima ( ( 𝐹 Fn 𝒫 𝐴 ∧ ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 ( 𝐹 “ ran 𝐺 ) ∈ ( 𝐹 “ ran 𝐺 ) ) → ( 𝐹 ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) )
44 5 9 42 43 syl3anc ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( 𝐹 ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) )
45 simpl ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → 𝐴 ∈ FinIII )
46 6 7 sstrid ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 )
47 incom ( dom 𝐹 ∩ ran 𝐺 ) = ( ran 𝐺 ∩ dom 𝐹 )
48 frn ( 𝐺 : ω ⟶ 𝒫 𝐴 → ran 𝐺 ⊆ 𝒫 𝐴 )
49 48 adantl ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐺 ⊆ 𝒫 𝐴 )
50 3 fdmd ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → dom 𝐹 = 𝒫 𝐴 )
51 49 50 sseqtrrd ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐺 ⊆ dom 𝐹 )
52 df-ss ( ran 𝐺 ⊆ dom 𝐹 ↔ ( ran 𝐺 ∩ dom 𝐹 ) = ran 𝐺 )
53 51 52 sylib ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ( ran 𝐺 ∩ dom 𝐹 ) = ran 𝐺 )
54 47 53 eqtrid ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ( dom 𝐹 ∩ ran 𝐺 ) = ran 𝐺 )
55 fdm ( 𝐺 : ω ⟶ 𝒫 𝐴 → dom 𝐺 = ω )
56 55 adantl ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → dom 𝐺 = ω )
57 peano1 ∅ ∈ ω
58 ne0i ( ∅ ∈ ω → ω ≠ ∅ )
59 57 58 mp1i ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ω ≠ ∅ )
60 56 59 eqnetrd ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → dom 𝐺 ≠ ∅ )
61 dm0rn0 ( dom 𝐺 = ∅ ↔ ran 𝐺 = ∅ )
62 61 necon3bii ( dom 𝐺 ≠ ∅ ↔ ran 𝐺 ≠ ∅ )
63 60 62 sylib ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ran 𝐺 ≠ ∅ )
64 54 63 eqnetrd ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ( dom 𝐹 ∩ ran 𝐺 ) ≠ ∅ )
65 imadisj ( ( 𝐹 “ ran 𝐺 ) = ∅ ↔ ( dom 𝐹 ∩ ran 𝐺 ) = ∅ )
66 65 necon3bii ( ( 𝐹 “ ran 𝐺 ) ≠ ∅ ↔ ( dom 𝐹 ∩ ran 𝐺 ) ≠ ∅ )
67 64 66 sylibr ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 “ ran 𝐺 ) ≠ ∅ )
68 1 isf34lem5 ( ( 𝐴 ∈ FinIII ∧ ( ( 𝐹 “ ran 𝐺 ) ⊆ 𝒫 𝐴 ∧ ( 𝐹 “ ran 𝐺 ) ≠ ∅ ) ) → ( 𝐹 ( 𝐹 “ ran 𝐺 ) ) = ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) )
69 45 46 67 68 syl12anc ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ( 𝐹 “ ran 𝐺 ) ) = ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) )
70 1 isf34lem3 ( ( 𝐴 ∈ FinIII ∧ ran 𝐺 ⊆ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) = ran 𝐺 )
71 45 49 70 syl2anc ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) = ran 𝐺 )
72 71 unieqd ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) = ran 𝐺 )
73 69 72 eqtrd ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ( 𝐹 “ ran 𝐺 ) ) = ran 𝐺 )
74 73 71 eleq12d ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ) → ( ( 𝐹 ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ↔ ran 𝐺 ∈ ran 𝐺 ) )
75 74 3adant3 ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ( ( 𝐹 ( 𝐹 “ ran 𝐺 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝐺 ) ) ↔ ran 𝐺 ∈ ran 𝐺 ) )
76 44 75 mpbid ( ( 𝐴 ∈ FinIII𝐺 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝐺𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) → ran 𝐺 ∈ ran 𝐺 )