Step |
Hyp |
Ref |
Expression |
1 |
|
compss.a |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 𝐴 ↦ ( 𝐴 ∖ 𝑥 ) ) |
2 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) → 𝑓 : ω ⟶ 𝒫 𝐴 ) |
3 |
1
|
isf34lem7 |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) ) → ∪ ran 𝑓 ∈ ran 𝑓 ) |
4 |
3
|
3expia |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝑓 : ω ⟶ 𝒫 𝐴 ) → ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) ) |
5 |
2 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ) → ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) ) |
6 |
5
|
ralrimiva |
⊢ ( 𝐴 ∈ FinIII → ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) ) |
7 |
|
elmapex |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝒫 𝐴 ∈ V ∧ ω ∈ V ) ) |
8 |
7
|
simpld |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → 𝒫 𝐴 ∈ V ) |
9 |
|
pwexb |
⊢ ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V ) |
10 |
8 9
|
sylibr |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → 𝐴 ∈ V ) |
11 |
1
|
isf34lem2 |
⊢ ( 𝐴 ∈ V → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
12 |
10 11
|
syl |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ) |
13 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → 𝑔 : ω ⟶ 𝒫 𝐴 ) |
14 |
|
fco |
⊢ ( ( 𝐹 : 𝒫 𝐴 ⟶ 𝒫 𝐴 ∧ 𝑔 : ω ⟶ 𝒫 𝐴 ) → ( 𝐹 ∘ 𝑔 ) : ω ⟶ 𝒫 𝐴 ) |
15 |
12 13 14
|
syl2anc |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝐹 ∘ 𝑔 ) : ω ⟶ 𝒫 𝐴 ) |
16 |
|
elmapg |
⊢ ( ( 𝒫 𝐴 ∈ V ∧ ω ∈ V ) → ( ( 𝐹 ∘ 𝑔 ) ∈ ( 𝒫 𝐴 ↑m ω ) ↔ ( 𝐹 ∘ 𝑔 ) : ω ⟶ 𝒫 𝐴 ) ) |
17 |
7 16
|
syl |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ( 𝐹 ∘ 𝑔 ) ∈ ( 𝒫 𝐴 ↑m ω ) ↔ ( 𝐹 ∘ 𝑔 ) : ω ⟶ 𝒫 𝐴 ) ) |
18 |
15 17
|
mpbird |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝐹 ∘ 𝑔 ) ∈ ( 𝒫 𝐴 ↑m ω ) ) |
19 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( 𝑓 ‘ 𝑦 ) = ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ) |
20 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( 𝑓 ‘ suc 𝑦 ) = ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) ) |
21 |
19 20
|
sseq12d |
⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) ↔ ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) ) ) |
22 |
21
|
ralbidv |
⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) ↔ ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) ) ) |
23 |
|
rneq |
⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ran 𝑓 = ran ( 𝐹 ∘ 𝑔 ) ) |
24 |
|
rnco2 |
⊢ ran ( 𝐹 ∘ 𝑔 ) = ( 𝐹 “ ran 𝑔 ) |
25 |
23 24
|
eqtrdi |
⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ran 𝑓 = ( 𝐹 “ ran 𝑔 ) ) |
26 |
25
|
unieqd |
⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ∪ ran 𝑓 = ∪ ( 𝐹 “ ran 𝑔 ) ) |
27 |
26 25
|
eleq12d |
⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( ∪ ran 𝑓 ∈ ran 𝑓 ↔ ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) ) ) |
28 |
22 27
|
imbi12d |
⊢ ( 𝑓 = ( 𝐹 ∘ 𝑔 ) → ( ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) ↔ ( ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) → ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) ) ) ) |
29 |
28
|
rspccv |
⊢ ( ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) → ( ( 𝐹 ∘ 𝑔 ) ∈ ( 𝒫 𝐴 ↑m ω ) → ( ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) → ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) ) ) ) |
30 |
18 29
|
syl5 |
⊢ ( ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) → ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) → ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) ) ) ) |
31 |
|
sscon |
⊢ ( ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ( 𝐴 ∖ ( 𝑔 ‘ 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝑔 ‘ suc 𝑦 ) ) ) |
32 |
13
|
ffvelrnda |
⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝑔 ‘ 𝑦 ) ∈ 𝒫 𝐴 ) |
33 |
32
|
elpwid |
⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝑔 ‘ 𝑦 ) ⊆ 𝐴 ) |
34 |
1
|
isf34lem1 |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝑔 ‘ 𝑦 ) ⊆ 𝐴 ) → ( 𝐹 ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐴 ∖ ( 𝑔 ‘ 𝑦 ) ) ) |
35 |
10 33 34
|
syl2an2r |
⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ ( 𝑔 ‘ 𝑦 ) ) = ( 𝐴 ∖ ( 𝑔 ‘ 𝑦 ) ) ) |
36 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
37 |
|
ffvelrn |
⊢ ( ( 𝑔 : ω ⟶ 𝒫 𝐴 ∧ suc 𝑦 ∈ ω ) → ( 𝑔 ‘ suc 𝑦 ) ∈ 𝒫 𝐴 ) |
38 |
13 36 37
|
syl2an |
⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝑔 ‘ suc 𝑦 ) ∈ 𝒫 𝐴 ) |
39 |
38
|
elpwid |
⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝑔 ‘ suc 𝑦 ) ⊆ 𝐴 ) |
40 |
1
|
isf34lem1 |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝑔 ‘ suc 𝑦 ) ⊆ 𝐴 ) → ( 𝐹 ‘ ( 𝑔 ‘ suc 𝑦 ) ) = ( 𝐴 ∖ ( 𝑔 ‘ suc 𝑦 ) ) ) |
41 |
10 39 40
|
syl2an2r |
⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ ( 𝑔 ‘ suc 𝑦 ) ) = ( 𝐴 ∖ ( 𝑔 ‘ suc 𝑦 ) ) ) |
42 |
35 41
|
sseq12d |
⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ‘ ( 𝑔 ‘ 𝑦 ) ) ⊆ ( 𝐹 ‘ ( 𝑔 ‘ suc 𝑦 ) ) ↔ ( 𝐴 ∖ ( 𝑔 ‘ 𝑦 ) ) ⊆ ( 𝐴 ∖ ( 𝑔 ‘ suc 𝑦 ) ) ) ) |
43 |
31 42
|
syl5ibr |
⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ( 𝐹 ‘ ( 𝑔 ‘ 𝑦 ) ) ⊆ ( 𝐹 ‘ ( 𝑔 ‘ suc 𝑦 ) ) ) ) |
44 |
|
fvco3 |
⊢ ( ( 𝑔 : ω ⟶ 𝒫 𝐴 ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑔 ‘ 𝑦 ) ) ) |
45 |
13 44
|
sylan |
⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑔 ‘ 𝑦 ) ) ) |
46 |
|
fvco3 |
⊢ ( ( 𝑔 : ω ⟶ 𝒫 𝐴 ∧ suc 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) = ( 𝐹 ‘ ( 𝑔 ‘ suc 𝑦 ) ) ) |
47 |
13 36 46
|
syl2an |
⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) = ( 𝐹 ‘ ( 𝑔 ‘ suc 𝑦 ) ) ) |
48 |
45 47
|
sseq12d |
⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) ↔ ( 𝐹 ‘ ( 𝑔 ‘ 𝑦 ) ) ⊆ ( 𝐹 ‘ ( 𝑔 ‘ suc 𝑦 ) ) ) ) |
49 |
43 48
|
sylibrd |
⊢ ( ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ∧ 𝑦 ∈ ω ) → ( ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) ) ) |
50 |
49
|
ralimdva |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ∀ 𝑦 ∈ ω ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) ) ) |
51 |
12
|
ffnd |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → 𝐹 Fn 𝒫 𝐴 ) |
52 |
|
imassrn |
⊢ ( 𝐹 “ ran 𝑔 ) ⊆ ran 𝐹 |
53 |
12
|
frnd |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ran 𝐹 ⊆ 𝒫 𝐴 ) |
54 |
52 53
|
sstrid |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝐹 “ ran 𝑔 ) ⊆ 𝒫 𝐴 ) |
55 |
|
fnfvima |
⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ ( 𝐹 “ ran 𝑔 ) ⊆ 𝒫 𝐴 ∧ ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) ) → ( 𝐹 ‘ ∪ ( 𝐹 “ ran 𝑔 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) ) |
56 |
55
|
3expia |
⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ ( 𝐹 “ ran 𝑔 ) ⊆ 𝒫 𝐴 ) → ( ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) → ( 𝐹 ‘ ∪ ( 𝐹 “ ran 𝑔 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) ) ) |
57 |
51 54 56
|
syl2anc |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) → ( 𝐹 ‘ ∪ ( 𝐹 “ ran 𝑔 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) ) ) |
58 |
|
incom |
⊢ ( dom 𝐹 ∩ ran 𝑔 ) = ( ran 𝑔 ∩ dom 𝐹 ) |
59 |
13
|
frnd |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ran 𝑔 ⊆ 𝒫 𝐴 ) |
60 |
12
|
fdmd |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → dom 𝐹 = 𝒫 𝐴 ) |
61 |
59 60
|
sseqtrrd |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ran 𝑔 ⊆ dom 𝐹 ) |
62 |
|
df-ss |
⊢ ( ran 𝑔 ⊆ dom 𝐹 ↔ ( ran 𝑔 ∩ dom 𝐹 ) = ran 𝑔 ) |
63 |
61 62
|
sylib |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ran 𝑔 ∩ dom 𝐹 ) = ran 𝑔 ) |
64 |
58 63
|
eqtrid |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( dom 𝐹 ∩ ran 𝑔 ) = ran 𝑔 ) |
65 |
13
|
fdmd |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → dom 𝑔 = ω ) |
66 |
|
peano1 |
⊢ ∅ ∈ ω |
67 |
|
ne0i |
⊢ ( ∅ ∈ ω → ω ≠ ∅ ) |
68 |
66 67
|
mp1i |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ω ≠ ∅ ) |
69 |
65 68
|
eqnetrd |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → dom 𝑔 ≠ ∅ ) |
70 |
|
dm0rn0 |
⊢ ( dom 𝑔 = ∅ ↔ ran 𝑔 = ∅ ) |
71 |
70
|
necon3bii |
⊢ ( dom 𝑔 ≠ ∅ ↔ ran 𝑔 ≠ ∅ ) |
72 |
69 71
|
sylib |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ran 𝑔 ≠ ∅ ) |
73 |
64 72
|
eqnetrd |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( dom 𝐹 ∩ ran 𝑔 ) ≠ ∅ ) |
74 |
|
imadisj |
⊢ ( ( 𝐹 “ ran 𝑔 ) = ∅ ↔ ( dom 𝐹 ∩ ran 𝑔 ) = ∅ ) |
75 |
74
|
necon3bii |
⊢ ( ( 𝐹 “ ran 𝑔 ) ≠ ∅ ↔ ( dom 𝐹 ∩ ran 𝑔 ) ≠ ∅ ) |
76 |
73 75
|
sylibr |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝐹 “ ran 𝑔 ) ≠ ∅ ) |
77 |
1
|
isf34lem4 |
⊢ ( ( 𝐴 ∈ V ∧ ( ( 𝐹 “ ran 𝑔 ) ⊆ 𝒫 𝐴 ∧ ( 𝐹 “ ran 𝑔 ) ≠ ∅ ) ) → ( 𝐹 ‘ ∪ ( 𝐹 “ ran 𝑔 ) ) = ∩ ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) ) |
78 |
10 54 76 77
|
syl12anc |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝐹 ‘ ∪ ( 𝐹 “ ran 𝑔 ) ) = ∩ ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) ) |
79 |
1
|
isf34lem3 |
⊢ ( ( 𝐴 ∈ V ∧ ran 𝑔 ⊆ 𝒫 𝐴 ) → ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) = ran 𝑔 ) |
80 |
10 59 79
|
syl2anc |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) = ran 𝑔 ) |
81 |
80
|
inteqd |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ∩ ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) = ∩ ran 𝑔 ) |
82 |
78 81
|
eqtrd |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( 𝐹 ‘ ∪ ( 𝐹 “ ran 𝑔 ) ) = ∩ ran 𝑔 ) |
83 |
82 80
|
eleq12d |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ( 𝐹 ‘ ∪ ( 𝐹 “ ran 𝑔 ) ) ∈ ( 𝐹 “ ( 𝐹 “ ran 𝑔 ) ) ↔ ∩ ran 𝑔 ∈ ran 𝑔 ) ) |
84 |
57 83
|
sylibd |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) → ∩ ran 𝑔 ∈ ran 𝑔 ) ) |
85 |
50 84
|
imim12d |
⊢ ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ( ∀ 𝑦 ∈ ω ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑦 ) ⊆ ( ( 𝐹 ∘ 𝑔 ) ‘ suc 𝑦 ) → ∪ ( 𝐹 “ ran 𝑔 ) ∈ ( 𝐹 “ ran 𝑔 ) ) → ( ∀ 𝑦 ∈ ω ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ∩ ran 𝑔 ∈ ran 𝑔 ) ) ) |
86 |
30 85
|
sylcom |
⊢ ( ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) → ( 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) → ( ∀ 𝑦 ∈ ω ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ∩ ran 𝑔 ∈ ran 𝑔 ) ) ) |
87 |
86
|
ralrimiv |
⊢ ( ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) → ∀ 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ∩ ran 𝑔 ∈ ran 𝑔 ) ) |
88 |
|
isfin3-3 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinIII ↔ ∀ 𝑔 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑔 ‘ suc 𝑦 ) ⊆ ( 𝑔 ‘ 𝑦 ) → ∩ ran 𝑔 ∈ ran 𝑔 ) ) ) |
89 |
87 88
|
syl5ibr |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) → 𝐴 ∈ FinIII ) ) |
90 |
6 89
|
impbid2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinIII ↔ ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑦 ∈ ω ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ suc 𝑦 ) → ∪ ran 𝑓 ∈ ran 𝑓 ) ) ) |