| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2exple2exp.1 |
|- ( ph -> X e. NN ) |
| 2 |
|
2exple2exp.2 |
|- ( ph -> K e. NN0 ) |
| 3 |
|
2exple2exp.3 |
|- ( ph -> ( 2 ^ K ) || X ) |
| 4 |
|
2exple2exp.4 |
|- ( ph -> X <_ ( 2 ^ ( K + 1 ) ) ) |
| 5 |
|
oveq2 |
|- ( n = K -> ( 2 ^ n ) = ( 2 ^ K ) ) |
| 6 |
5
|
eqeq2d |
|- ( n = K -> ( X = ( 2 ^ n ) <-> X = ( 2 ^ K ) ) ) |
| 7 |
2
|
adantr |
|- ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) -> K e. NN0 ) |
| 8 |
|
simplr |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> m e. NN ) |
| 9 |
8
|
nnnn0d |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> m e. NN0 ) |
| 10 |
|
2nn |
|- 2 e. NN |
| 11 |
10
|
a1i |
|- ( ph -> 2 e. NN ) |
| 12 |
11 2
|
nnexpcld |
|- ( ph -> ( 2 ^ K ) e. NN ) |
| 13 |
12
|
nncnd |
|- ( ph -> ( 2 ^ K ) e. CC ) |
| 14 |
13
|
ad3antrrr |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> ( 2 ^ K ) e. CC ) |
| 15 |
8
|
nncnd |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> m e. CC ) |
| 16 |
14 15
|
mulcomd |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> ( ( 2 ^ K ) x. m ) = ( m x. ( 2 ^ K ) ) ) |
| 17 |
|
simpr |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> ( m x. ( 2 ^ K ) ) = X ) |
| 18 |
|
simpllr |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> X < ( 2 ^ ( K + 1 ) ) ) |
| 19 |
|
2cnd |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> 2 e. CC ) |
| 20 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> K e. NN0 ) |
| 21 |
19 20
|
expp1d |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> ( 2 ^ ( K + 1 ) ) = ( ( 2 ^ K ) x. 2 ) ) |
| 22 |
18 21
|
breqtrd |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> X < ( ( 2 ^ K ) x. 2 ) ) |
| 23 |
17 22
|
eqbrtrd |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> ( m x. ( 2 ^ K ) ) < ( ( 2 ^ K ) x. 2 ) ) |
| 24 |
16 23
|
eqbrtrd |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> ( ( 2 ^ K ) x. m ) < ( ( 2 ^ K ) x. 2 ) ) |
| 25 |
8
|
nnred |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> m e. RR ) |
| 26 |
|
2re |
|- 2 e. RR |
| 27 |
26
|
a1i |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> 2 e. RR ) |
| 28 |
12
|
ad3antrrr |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> ( 2 ^ K ) e. NN ) |
| 29 |
28
|
nnrpd |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> ( 2 ^ K ) e. RR+ ) |
| 30 |
25 27 29
|
ltmul2d |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> ( m < 2 <-> ( ( 2 ^ K ) x. m ) < ( ( 2 ^ K ) x. 2 ) ) ) |
| 31 |
24 30
|
mpbird |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> m < 2 ) |
| 32 |
8
|
nnne0d |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> m =/= 0 ) |
| 33 |
32
|
neneqd |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> -. m = 0 ) |
| 34 |
|
nn0lt2 |
|- ( ( m e. NN0 /\ m < 2 ) -> ( m = 0 \/ m = 1 ) ) |
| 35 |
34
|
orcanai |
|- ( ( ( m e. NN0 /\ m < 2 ) /\ -. m = 0 ) -> m = 1 ) |
| 36 |
9 31 33 35
|
syl21anc |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> m = 1 ) |
| 37 |
36
|
oveq1d |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> ( m x. ( 2 ^ K ) ) = ( 1 x. ( 2 ^ K ) ) ) |
| 38 |
14
|
mullidd |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> ( 1 x. ( 2 ^ K ) ) = ( 2 ^ K ) ) |
| 39 |
37 17 38
|
3eqtr3d |
|- ( ( ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) /\ m e. NN ) /\ ( m x. ( 2 ^ K ) ) = X ) -> X = ( 2 ^ K ) ) |
| 40 |
|
nndivides |
|- ( ( ( 2 ^ K ) e. NN /\ X e. NN ) -> ( ( 2 ^ K ) || X <-> E. m e. NN ( m x. ( 2 ^ K ) ) = X ) ) |
| 41 |
40
|
biimpa |
|- ( ( ( ( 2 ^ K ) e. NN /\ X e. NN ) /\ ( 2 ^ K ) || X ) -> E. m e. NN ( m x. ( 2 ^ K ) ) = X ) |
| 42 |
12 1 3 41
|
syl21anc |
|- ( ph -> E. m e. NN ( m x. ( 2 ^ K ) ) = X ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) -> E. m e. NN ( m x. ( 2 ^ K ) ) = X ) |
| 44 |
39 43
|
r19.29a |
|- ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) -> X = ( 2 ^ K ) ) |
| 45 |
6 7 44
|
rspcedvdw |
|- ( ( ph /\ X < ( 2 ^ ( K + 1 ) ) ) -> E. n e. NN0 X = ( 2 ^ n ) ) |
| 46 |
|
oveq2 |
|- ( n = ( K + 1 ) -> ( 2 ^ n ) = ( 2 ^ ( K + 1 ) ) ) |
| 47 |
46
|
eqeq2d |
|- ( n = ( K + 1 ) -> ( X = ( 2 ^ n ) <-> X = ( 2 ^ ( K + 1 ) ) ) ) |
| 48 |
|
peano2nn0 |
|- ( K e. NN0 -> ( K + 1 ) e. NN0 ) |
| 49 |
2 48
|
syl |
|- ( ph -> ( K + 1 ) e. NN0 ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ X = ( 2 ^ ( K + 1 ) ) ) -> ( K + 1 ) e. NN0 ) |
| 51 |
|
simpr |
|- ( ( ph /\ X = ( 2 ^ ( K + 1 ) ) ) -> X = ( 2 ^ ( K + 1 ) ) ) |
| 52 |
47 50 51
|
rspcedvdw |
|- ( ( ph /\ X = ( 2 ^ ( K + 1 ) ) ) -> E. n e. NN0 X = ( 2 ^ n ) ) |
| 53 |
1
|
nnred |
|- ( ph -> X e. RR ) |
| 54 |
26
|
a1i |
|- ( ph -> 2 e. RR ) |
| 55 |
54 49
|
reexpcld |
|- ( ph -> ( 2 ^ ( K + 1 ) ) e. RR ) |
| 56 |
|
leloe |
|- ( ( X e. RR /\ ( 2 ^ ( K + 1 ) ) e. RR ) -> ( X <_ ( 2 ^ ( K + 1 ) ) <-> ( X < ( 2 ^ ( K + 1 ) ) \/ X = ( 2 ^ ( K + 1 ) ) ) ) ) |
| 57 |
56
|
biimpa |
|- ( ( ( X e. RR /\ ( 2 ^ ( K + 1 ) ) e. RR ) /\ X <_ ( 2 ^ ( K + 1 ) ) ) -> ( X < ( 2 ^ ( K + 1 ) ) \/ X = ( 2 ^ ( K + 1 ) ) ) ) |
| 58 |
53 55 4 57
|
syl21anc |
|- ( ph -> ( X < ( 2 ^ ( K + 1 ) ) \/ X = ( 2 ^ ( K + 1 ) ) ) ) |
| 59 |
45 52 58
|
mpjaodan |
|- ( ph -> E. n e. NN0 X = ( 2 ^ n ) ) |