Metamath Proof Explorer


Theorem 2exple2exp

Description: If a nonnegative integer X is a multiple of a power of two, but less than the next power of two, it is itself a power of two. (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypotheses 2exple2exp.1 φ X
2exple2exp.2 φ K 0
2exple2exp.3 φ 2 K X
2exple2exp.4 φ X 2 K + 1
Assertion 2exple2exp φ n 0 X = 2 n

Proof

Step Hyp Ref Expression
1 2exple2exp.1 φ X
2 2exple2exp.2 φ K 0
3 2exple2exp.3 φ 2 K X
4 2exple2exp.4 φ X 2 K + 1
5 oveq2 n = K 2 n = 2 K
6 5 eqeq2d n = K X = 2 n X = 2 K
7 2 adantr φ X < 2 K + 1 K 0
8 simplr φ X < 2 K + 1 m m 2 K = X m
9 8 nnnn0d φ X < 2 K + 1 m m 2 K = X m 0
10 2nn 2
11 10 a1i φ 2
12 11 2 nnexpcld φ 2 K
13 12 nncnd φ 2 K
14 13 ad3antrrr φ X < 2 K + 1 m m 2 K = X 2 K
15 8 nncnd φ X < 2 K + 1 m m 2 K = X m
16 14 15 mulcomd φ X < 2 K + 1 m m 2 K = X 2 K m = m 2 K
17 simpr φ X < 2 K + 1 m m 2 K = X m 2 K = X
18 simpllr φ X < 2 K + 1 m m 2 K = X X < 2 K + 1
19 2cnd φ X < 2 K + 1 m m 2 K = X 2
20 2 ad3antrrr φ X < 2 K + 1 m m 2 K = X K 0
21 19 20 expp1d φ X < 2 K + 1 m m 2 K = X 2 K + 1 = 2 K 2
22 18 21 breqtrd φ X < 2 K + 1 m m 2 K = X X < 2 K 2
23 17 22 eqbrtrd φ X < 2 K + 1 m m 2 K = X m 2 K < 2 K 2
24 16 23 eqbrtrd φ X < 2 K + 1 m m 2 K = X 2 K m < 2 K 2
25 8 nnred φ X < 2 K + 1 m m 2 K = X m
26 2re 2
27 26 a1i φ X < 2 K + 1 m m 2 K = X 2
28 12 ad3antrrr φ X < 2 K + 1 m m 2 K = X 2 K
29 28 nnrpd φ X < 2 K + 1 m m 2 K = X 2 K +
30 25 27 29 ltmul2d φ X < 2 K + 1 m m 2 K = X m < 2 2 K m < 2 K 2
31 24 30 mpbird φ X < 2 K + 1 m m 2 K = X m < 2
32 8 nnne0d φ X < 2 K + 1 m m 2 K = X m 0
33 32 neneqd φ X < 2 K + 1 m m 2 K = X ¬ m = 0
34 nn0lt2 m 0 m < 2 m = 0 m = 1
35 34 orcanai m 0 m < 2 ¬ m = 0 m = 1
36 9 31 33 35 syl21anc φ X < 2 K + 1 m m 2 K = X m = 1
37 36 oveq1d φ X < 2 K + 1 m m 2 K = X m 2 K = 1 2 K
38 14 mullidd φ X < 2 K + 1 m m 2 K = X 1 2 K = 2 K
39 37 17 38 3eqtr3d φ X < 2 K + 1 m m 2 K = X X = 2 K
40 nndivides 2 K X 2 K X m m 2 K = X
41 40 biimpa 2 K X 2 K X m m 2 K = X
42 12 1 3 41 syl21anc φ m m 2 K = X
43 42 adantr φ X < 2 K + 1 m m 2 K = X
44 39 43 r19.29a φ X < 2 K + 1 X = 2 K
45 6 7 44 rspcedvdw φ X < 2 K + 1 n 0 X = 2 n
46 oveq2 n = K + 1 2 n = 2 K + 1
47 46 eqeq2d n = K + 1 X = 2 n X = 2 K + 1
48 peano2nn0 K 0 K + 1 0
49 2 48 syl φ K + 1 0
50 49 adantr φ X = 2 K + 1 K + 1 0
51 simpr φ X = 2 K + 1 X = 2 K + 1
52 47 50 51 rspcedvdw φ X = 2 K + 1 n 0 X = 2 n
53 1 nnred φ X
54 26 a1i φ 2
55 54 49 reexpcld φ 2 K + 1
56 leloe X 2 K + 1 X 2 K + 1 X < 2 K + 1 X = 2 K + 1
57 56 biimpa X 2 K + 1 X 2 K + 1 X < 2 K + 1 X = 2 K + 1
58 53 55 4 57 syl21anc φ X < 2 K + 1 X = 2 K + 1
59 45 52 58 mpjaodan φ n 0 X = 2 n