| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2exple2exp.1 |
⊢ ( 𝜑 → 𝑋 ∈ ℕ ) |
| 2 |
|
2exple2exp.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 3 |
|
2exple2exp.3 |
⊢ ( 𝜑 → ( 2 ↑ 𝐾 ) ∥ 𝑋 ) |
| 4 |
|
2exple2exp.4 |
⊢ ( 𝜑 → 𝑋 ≤ ( 2 ↑ ( 𝐾 + 1 ) ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑛 = 𝐾 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝐾 ) ) |
| 6 |
5
|
eqeq2d |
⊢ ( 𝑛 = 𝐾 → ( 𝑋 = ( 2 ↑ 𝑛 ) ↔ 𝑋 = ( 2 ↑ 𝐾 ) ) ) |
| 7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) → 𝐾 ∈ ℕ0 ) |
| 8 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → 𝑚 ∈ ℕ ) |
| 9 |
8
|
nnnn0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → 𝑚 ∈ ℕ0 ) |
| 10 |
|
2nn |
⊢ 2 ∈ ℕ |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 12 |
11 2
|
nnexpcld |
⊢ ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℕ ) |
| 13 |
12
|
nncnd |
⊢ ( 𝜑 → ( 2 ↑ 𝐾 ) ∈ ℂ ) |
| 14 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → ( 2 ↑ 𝐾 ) ∈ ℂ ) |
| 15 |
8
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → 𝑚 ∈ ℂ ) |
| 16 |
14 15
|
mulcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → ( ( 2 ↑ 𝐾 ) · 𝑚 ) = ( 𝑚 · ( 2 ↑ 𝐾 ) ) ) |
| 17 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) |
| 18 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) |
| 19 |
|
2cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → 2 ∈ ℂ ) |
| 20 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → 𝐾 ∈ ℕ0 ) |
| 21 |
19 20
|
expp1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → ( 2 ↑ ( 𝐾 + 1 ) ) = ( ( 2 ↑ 𝐾 ) · 2 ) ) |
| 22 |
18 21
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → 𝑋 < ( ( 2 ↑ 𝐾 ) · 2 ) ) |
| 23 |
17 22
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → ( 𝑚 · ( 2 ↑ 𝐾 ) ) < ( ( 2 ↑ 𝐾 ) · 2 ) ) |
| 24 |
16 23
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → ( ( 2 ↑ 𝐾 ) · 𝑚 ) < ( ( 2 ↑ 𝐾 ) · 2 ) ) |
| 25 |
8
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → 𝑚 ∈ ℝ ) |
| 26 |
|
2re |
⊢ 2 ∈ ℝ |
| 27 |
26
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → 2 ∈ ℝ ) |
| 28 |
12
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → ( 2 ↑ 𝐾 ) ∈ ℕ ) |
| 29 |
28
|
nnrpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → ( 2 ↑ 𝐾 ) ∈ ℝ+ ) |
| 30 |
25 27 29
|
ltmul2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → ( 𝑚 < 2 ↔ ( ( 2 ↑ 𝐾 ) · 𝑚 ) < ( ( 2 ↑ 𝐾 ) · 2 ) ) ) |
| 31 |
24 30
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → 𝑚 < 2 ) |
| 32 |
8
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → 𝑚 ≠ 0 ) |
| 33 |
32
|
neneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → ¬ 𝑚 = 0 ) |
| 34 |
|
nn0lt2 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 2 ) → ( 𝑚 = 0 ∨ 𝑚 = 1 ) ) |
| 35 |
34
|
orcanai |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 < 2 ) ∧ ¬ 𝑚 = 0 ) → 𝑚 = 1 ) |
| 36 |
9 31 33 35
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → 𝑚 = 1 ) |
| 37 |
36
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → ( 𝑚 · ( 2 ↑ 𝐾 ) ) = ( 1 · ( 2 ↑ 𝐾 ) ) ) |
| 38 |
14
|
mullidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → ( 1 · ( 2 ↑ 𝐾 ) ) = ( 2 ↑ 𝐾 ) ) |
| 39 |
37 17 38
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) → 𝑋 = ( 2 ↑ 𝐾 ) ) |
| 40 |
|
nndivides |
⊢ ( ( ( 2 ↑ 𝐾 ) ∈ ℕ ∧ 𝑋 ∈ ℕ ) → ( ( 2 ↑ 𝐾 ) ∥ 𝑋 ↔ ∃ 𝑚 ∈ ℕ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) ) |
| 41 |
40
|
biimpa |
⊢ ( ( ( ( 2 ↑ 𝐾 ) ∈ ℕ ∧ 𝑋 ∈ ℕ ) ∧ ( 2 ↑ 𝐾 ) ∥ 𝑋 ) → ∃ 𝑚 ∈ ℕ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) |
| 42 |
12 1 3 41
|
syl21anc |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℕ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) → ∃ 𝑚 ∈ ℕ ( 𝑚 · ( 2 ↑ 𝐾 ) ) = 𝑋 ) |
| 44 |
39 43
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) → 𝑋 = ( 2 ↑ 𝐾 ) ) |
| 45 |
6 7 44
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ0 𝑋 = ( 2 ↑ 𝑛 ) ) |
| 46 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝐾 + 1 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝐾 + 1 ) ) ) |
| 47 |
46
|
eqeq2d |
⊢ ( 𝑛 = ( 𝐾 + 1 ) → ( 𝑋 = ( 2 ↑ 𝑛 ) ↔ 𝑋 = ( 2 ↑ ( 𝐾 + 1 ) ) ) ) |
| 48 |
|
peano2nn0 |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 + 1 ) ∈ ℕ0 ) |
| 49 |
2 48
|
syl |
⊢ ( 𝜑 → ( 𝐾 + 1 ) ∈ ℕ0 ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 2 ↑ ( 𝐾 + 1 ) ) ) → ( 𝐾 + 1 ) ∈ ℕ0 ) |
| 51 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 2 ↑ ( 𝐾 + 1 ) ) ) → 𝑋 = ( 2 ↑ ( 𝐾 + 1 ) ) ) |
| 52 |
47 50 51
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 2 ↑ ( 𝐾 + 1 ) ) ) → ∃ 𝑛 ∈ ℕ0 𝑋 = ( 2 ↑ 𝑛 ) ) |
| 53 |
1
|
nnred |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 54 |
26
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 55 |
54 49
|
reexpcld |
⊢ ( 𝜑 → ( 2 ↑ ( 𝐾 + 1 ) ) ∈ ℝ ) |
| 56 |
|
leloe |
⊢ ( ( 𝑋 ∈ ℝ ∧ ( 2 ↑ ( 𝐾 + 1 ) ) ∈ ℝ ) → ( 𝑋 ≤ ( 2 ↑ ( 𝐾 + 1 ) ) ↔ ( 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ∨ 𝑋 = ( 2 ↑ ( 𝐾 + 1 ) ) ) ) ) |
| 57 |
56
|
biimpa |
⊢ ( ( ( 𝑋 ∈ ℝ ∧ ( 2 ↑ ( 𝐾 + 1 ) ) ∈ ℝ ) ∧ 𝑋 ≤ ( 2 ↑ ( 𝐾 + 1 ) ) ) → ( 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ∨ 𝑋 = ( 2 ↑ ( 𝐾 + 1 ) ) ) ) |
| 58 |
53 55 4 57
|
syl21anc |
⊢ ( 𝜑 → ( 𝑋 < ( 2 ↑ ( 𝐾 + 1 ) ) ∨ 𝑋 = ( 2 ↑ ( 𝐾 + 1 ) ) ) ) |
| 59 |
45 52 58
|
mpjaodan |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ0 𝑋 = ( 2 ↑ 𝑛 ) ) |