Step |
Hyp |
Ref |
Expression |
1 |
|
elxp7 |
|- ( w e. ( B X. C ) <-> ( w e. ( _V X. _V ) /\ ( ( 1st ` w ) e. B /\ ( 2nd ` w ) e. C ) ) ) |
2 |
1
|
anbi1i |
|- ( ( w e. ( B X. C ) /\ ( 2nd ` w ) e. A ) <-> ( ( w e. ( _V X. _V ) /\ ( ( 1st ` w ) e. B /\ ( 2nd ` w ) e. C ) ) /\ ( 2nd ` w ) e. A ) ) |
3 |
|
ssel |
|- ( A C_ C -> ( ( 2nd ` w ) e. A -> ( 2nd ` w ) e. C ) ) |
4 |
3
|
pm4.71rd |
|- ( A C_ C -> ( ( 2nd ` w ) e. A <-> ( ( 2nd ` w ) e. C /\ ( 2nd ` w ) e. A ) ) ) |
5 |
4
|
anbi2d |
|- ( A C_ C -> ( ( ( w e. ( _V X. _V ) /\ ( 1st ` w ) e. B ) /\ ( 2nd ` w ) e. A ) <-> ( ( w e. ( _V X. _V ) /\ ( 1st ` w ) e. B ) /\ ( ( 2nd ` w ) e. C /\ ( 2nd ` w ) e. A ) ) ) ) |
6 |
|
anass |
|- ( ( ( ( w e. ( _V X. _V ) /\ ( 1st ` w ) e. B ) /\ ( 2nd ` w ) e. C ) /\ ( 2nd ` w ) e. A ) <-> ( ( w e. ( _V X. _V ) /\ ( 1st ` w ) e. B ) /\ ( ( 2nd ` w ) e. C /\ ( 2nd ` w ) e. A ) ) ) |
7 |
6
|
bicomi |
|- ( ( ( w e. ( _V X. _V ) /\ ( 1st ` w ) e. B ) /\ ( ( 2nd ` w ) e. C /\ ( 2nd ` w ) e. A ) ) <-> ( ( ( w e. ( _V X. _V ) /\ ( 1st ` w ) e. B ) /\ ( 2nd ` w ) e. C ) /\ ( 2nd ` w ) e. A ) ) |
8 |
7
|
a1i |
|- ( A C_ C -> ( ( ( w e. ( _V X. _V ) /\ ( 1st ` w ) e. B ) /\ ( ( 2nd ` w ) e. C /\ ( 2nd ` w ) e. A ) ) <-> ( ( ( w e. ( _V X. _V ) /\ ( 1st ` w ) e. B ) /\ ( 2nd ` w ) e. C ) /\ ( 2nd ` w ) e. A ) ) ) |
9 |
|
anass |
|- ( ( ( w e. ( _V X. _V ) /\ ( 1st ` w ) e. B ) /\ ( 2nd ` w ) e. C ) <-> ( w e. ( _V X. _V ) /\ ( ( 1st ` w ) e. B /\ ( 2nd ` w ) e. C ) ) ) |
10 |
9
|
anbi1i |
|- ( ( ( ( w e. ( _V X. _V ) /\ ( 1st ` w ) e. B ) /\ ( 2nd ` w ) e. C ) /\ ( 2nd ` w ) e. A ) <-> ( ( w e. ( _V X. _V ) /\ ( ( 1st ` w ) e. B /\ ( 2nd ` w ) e. C ) ) /\ ( 2nd ` w ) e. A ) ) |
11 |
10
|
a1i |
|- ( A C_ C -> ( ( ( ( w e. ( _V X. _V ) /\ ( 1st ` w ) e. B ) /\ ( 2nd ` w ) e. C ) /\ ( 2nd ` w ) e. A ) <-> ( ( w e. ( _V X. _V ) /\ ( ( 1st ` w ) e. B /\ ( 2nd ` w ) e. C ) ) /\ ( 2nd ` w ) e. A ) ) ) |
12 |
5 8 11
|
3bitrd |
|- ( A C_ C -> ( ( ( w e. ( _V X. _V ) /\ ( 1st ` w ) e. B ) /\ ( 2nd ` w ) e. A ) <-> ( ( w e. ( _V X. _V ) /\ ( ( 1st ` w ) e. B /\ ( 2nd ` w ) e. C ) ) /\ ( 2nd ` w ) e. A ) ) ) |
13 |
2 12
|
bitr4id |
|- ( A C_ C -> ( ( w e. ( B X. C ) /\ ( 2nd ` w ) e. A ) <-> ( ( w e. ( _V X. _V ) /\ ( 1st ` w ) e. B ) /\ ( 2nd ` w ) e. A ) ) ) |
14 |
|
ancom |
|- ( ( w e. ( B X. C ) /\ ( 2nd ` w ) e. A ) <-> ( ( 2nd ` w ) e. A /\ w e. ( B X. C ) ) ) |
15 |
|
anass |
|- ( ( ( w e. ( _V X. _V ) /\ ( 1st ` w ) e. B ) /\ ( 2nd ` w ) e. A ) <-> ( w e. ( _V X. _V ) /\ ( ( 1st ` w ) e. B /\ ( 2nd ` w ) e. A ) ) ) |
16 |
13 14 15
|
3bitr3g |
|- ( A C_ C -> ( ( ( 2nd ` w ) e. A /\ w e. ( B X. C ) ) <-> ( w e. ( _V X. _V ) /\ ( ( 1st ` w ) e. B /\ ( 2nd ` w ) e. A ) ) ) ) |
17 |
|
cnvresima |
|- ( `' ( 2nd |` ( B X. C ) ) " A ) = ( ( `' 2nd " A ) i^i ( B X. C ) ) |
18 |
17
|
eleq2i |
|- ( w e. ( `' ( 2nd |` ( B X. C ) ) " A ) <-> w e. ( ( `' 2nd " A ) i^i ( B X. C ) ) ) |
19 |
|
elin |
|- ( w e. ( ( `' 2nd " A ) i^i ( B X. C ) ) <-> ( w e. ( `' 2nd " A ) /\ w e. ( B X. C ) ) ) |
20 |
|
vex |
|- w e. _V |
21 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
22 |
|
fofn |
|- ( 2nd : _V -onto-> _V -> 2nd Fn _V ) |
23 |
|
elpreima |
|- ( 2nd Fn _V -> ( w e. ( `' 2nd " A ) <-> ( w e. _V /\ ( 2nd ` w ) e. A ) ) ) |
24 |
21 22 23
|
mp2b |
|- ( w e. ( `' 2nd " A ) <-> ( w e. _V /\ ( 2nd ` w ) e. A ) ) |
25 |
20 24
|
mpbiran |
|- ( w e. ( `' 2nd " A ) <-> ( 2nd ` w ) e. A ) |
26 |
25
|
anbi1i |
|- ( ( w e. ( `' 2nd " A ) /\ w e. ( B X. C ) ) <-> ( ( 2nd ` w ) e. A /\ w e. ( B X. C ) ) ) |
27 |
18 19 26
|
3bitri |
|- ( w e. ( `' ( 2nd |` ( B X. C ) ) " A ) <-> ( ( 2nd ` w ) e. A /\ w e. ( B X. C ) ) ) |
28 |
|
elxp7 |
|- ( w e. ( B X. A ) <-> ( w e. ( _V X. _V ) /\ ( ( 1st ` w ) e. B /\ ( 2nd ` w ) e. A ) ) ) |
29 |
16 27 28
|
3bitr4g |
|- ( A C_ C -> ( w e. ( `' ( 2nd |` ( B X. C ) ) " A ) <-> w e. ( B X. A ) ) ) |
30 |
29
|
eqrdv |
|- ( A C_ C -> ( `' ( 2nd |` ( B X. C ) ) " A ) = ( B X. A ) ) |