Metamath Proof Explorer


Theorem 2ndpreima

Description: The preimage by 2nd is an 'horizontal band'. (Contributed by Thierry Arnoux, 13-Oct-2017)

Ref Expression
Assertion 2ndpreima ( 𝐴𝐶 → ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) “ 𝐴 ) = ( 𝐵 × 𝐴 ) )

Proof

Step Hyp Ref Expression
1 elxp7 ( 𝑤 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝑤 ∈ ( V × V ) ∧ ( ( 1st𝑤 ) ∈ 𝐵 ∧ ( 2nd𝑤 ) ∈ 𝐶 ) ) )
2 1 anbi1i ( ( 𝑤 ∈ ( 𝐵 × 𝐶 ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ↔ ( ( 𝑤 ∈ ( V × V ) ∧ ( ( 1st𝑤 ) ∈ 𝐵 ∧ ( 2nd𝑤 ) ∈ 𝐶 ) ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) )
3 ssel ( 𝐴𝐶 → ( ( 2nd𝑤 ) ∈ 𝐴 → ( 2nd𝑤 ) ∈ 𝐶 ) )
4 3 pm4.71rd ( 𝐴𝐶 → ( ( 2nd𝑤 ) ∈ 𝐴 ↔ ( ( 2nd𝑤 ) ∈ 𝐶 ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ) )
5 4 anbi2d ( 𝐴𝐶 → ( ( ( 𝑤 ∈ ( V × V ) ∧ ( 1st𝑤 ) ∈ 𝐵 ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ↔ ( ( 𝑤 ∈ ( V × V ) ∧ ( 1st𝑤 ) ∈ 𝐵 ) ∧ ( ( 2nd𝑤 ) ∈ 𝐶 ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ) ) )
6 anass ( ( ( ( 𝑤 ∈ ( V × V ) ∧ ( 1st𝑤 ) ∈ 𝐵 ) ∧ ( 2nd𝑤 ) ∈ 𝐶 ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ↔ ( ( 𝑤 ∈ ( V × V ) ∧ ( 1st𝑤 ) ∈ 𝐵 ) ∧ ( ( 2nd𝑤 ) ∈ 𝐶 ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ) )
7 6 bicomi ( ( ( 𝑤 ∈ ( V × V ) ∧ ( 1st𝑤 ) ∈ 𝐵 ) ∧ ( ( 2nd𝑤 ) ∈ 𝐶 ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ) ↔ ( ( ( 𝑤 ∈ ( V × V ) ∧ ( 1st𝑤 ) ∈ 𝐵 ) ∧ ( 2nd𝑤 ) ∈ 𝐶 ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) )
8 7 a1i ( 𝐴𝐶 → ( ( ( 𝑤 ∈ ( V × V ) ∧ ( 1st𝑤 ) ∈ 𝐵 ) ∧ ( ( 2nd𝑤 ) ∈ 𝐶 ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ) ↔ ( ( ( 𝑤 ∈ ( V × V ) ∧ ( 1st𝑤 ) ∈ 𝐵 ) ∧ ( 2nd𝑤 ) ∈ 𝐶 ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ) )
9 anass ( ( ( 𝑤 ∈ ( V × V ) ∧ ( 1st𝑤 ) ∈ 𝐵 ) ∧ ( 2nd𝑤 ) ∈ 𝐶 ) ↔ ( 𝑤 ∈ ( V × V ) ∧ ( ( 1st𝑤 ) ∈ 𝐵 ∧ ( 2nd𝑤 ) ∈ 𝐶 ) ) )
10 9 anbi1i ( ( ( ( 𝑤 ∈ ( V × V ) ∧ ( 1st𝑤 ) ∈ 𝐵 ) ∧ ( 2nd𝑤 ) ∈ 𝐶 ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ↔ ( ( 𝑤 ∈ ( V × V ) ∧ ( ( 1st𝑤 ) ∈ 𝐵 ∧ ( 2nd𝑤 ) ∈ 𝐶 ) ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) )
11 10 a1i ( 𝐴𝐶 → ( ( ( ( 𝑤 ∈ ( V × V ) ∧ ( 1st𝑤 ) ∈ 𝐵 ) ∧ ( 2nd𝑤 ) ∈ 𝐶 ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ↔ ( ( 𝑤 ∈ ( V × V ) ∧ ( ( 1st𝑤 ) ∈ 𝐵 ∧ ( 2nd𝑤 ) ∈ 𝐶 ) ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ) )
12 5 8 11 3bitrd ( 𝐴𝐶 → ( ( ( 𝑤 ∈ ( V × V ) ∧ ( 1st𝑤 ) ∈ 𝐵 ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ↔ ( ( 𝑤 ∈ ( V × V ) ∧ ( ( 1st𝑤 ) ∈ 𝐵 ∧ ( 2nd𝑤 ) ∈ 𝐶 ) ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ) )
13 2 12 bitr4id ( 𝐴𝐶 → ( ( 𝑤 ∈ ( 𝐵 × 𝐶 ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ↔ ( ( 𝑤 ∈ ( V × V ) ∧ ( 1st𝑤 ) ∈ 𝐵 ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ) )
14 ancom ( ( 𝑤 ∈ ( 𝐵 × 𝐶 ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ↔ ( ( 2nd𝑤 ) ∈ 𝐴𝑤 ∈ ( 𝐵 × 𝐶 ) ) )
15 anass ( ( ( 𝑤 ∈ ( V × V ) ∧ ( 1st𝑤 ) ∈ 𝐵 ) ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ↔ ( 𝑤 ∈ ( V × V ) ∧ ( ( 1st𝑤 ) ∈ 𝐵 ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ) )
16 13 14 15 3bitr3g ( 𝐴𝐶 → ( ( ( 2nd𝑤 ) ∈ 𝐴𝑤 ∈ ( 𝐵 × 𝐶 ) ) ↔ ( 𝑤 ∈ ( V × V ) ∧ ( ( 1st𝑤 ) ∈ 𝐵 ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ) ) )
17 cnvresima ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) “ 𝐴 ) = ( ( 2nd𝐴 ) ∩ ( 𝐵 × 𝐶 ) )
18 17 eleq2i ( 𝑤 ∈ ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) “ 𝐴 ) ↔ 𝑤 ∈ ( ( 2nd𝐴 ) ∩ ( 𝐵 × 𝐶 ) ) )
19 elin ( 𝑤 ∈ ( ( 2nd𝐴 ) ∩ ( 𝐵 × 𝐶 ) ) ↔ ( 𝑤 ∈ ( 2nd𝐴 ) ∧ 𝑤 ∈ ( 𝐵 × 𝐶 ) ) )
20 vex 𝑤 ∈ V
21 fo2nd 2nd : V –onto→ V
22 fofn ( 2nd : V –onto→ V → 2nd Fn V )
23 elpreima ( 2nd Fn V → ( 𝑤 ∈ ( 2nd𝐴 ) ↔ ( 𝑤 ∈ V ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ) )
24 21 22 23 mp2b ( 𝑤 ∈ ( 2nd𝐴 ) ↔ ( 𝑤 ∈ V ∧ ( 2nd𝑤 ) ∈ 𝐴 ) )
25 20 24 mpbiran ( 𝑤 ∈ ( 2nd𝐴 ) ↔ ( 2nd𝑤 ) ∈ 𝐴 )
26 25 anbi1i ( ( 𝑤 ∈ ( 2nd𝐴 ) ∧ 𝑤 ∈ ( 𝐵 × 𝐶 ) ) ↔ ( ( 2nd𝑤 ) ∈ 𝐴𝑤 ∈ ( 𝐵 × 𝐶 ) ) )
27 18 19 26 3bitri ( 𝑤 ∈ ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) “ 𝐴 ) ↔ ( ( 2nd𝑤 ) ∈ 𝐴𝑤 ∈ ( 𝐵 × 𝐶 ) ) )
28 elxp7 ( 𝑤 ∈ ( 𝐵 × 𝐴 ) ↔ ( 𝑤 ∈ ( V × V ) ∧ ( ( 1st𝑤 ) ∈ 𝐵 ∧ ( 2nd𝑤 ) ∈ 𝐴 ) ) )
29 16 27 28 3bitr4g ( 𝐴𝐶 → ( 𝑤 ∈ ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) “ 𝐴 ) ↔ 𝑤 ∈ ( 𝐵 × 𝐴 ) ) )
30 29 eqrdv ( 𝐴𝐶 → ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) “ 𝐴 ) = ( 𝐵 × 𝐴 ) )