| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4at.l |
|- .<_ = ( le ` K ) |
| 2 |
|
4at.j |
|- .\/ = ( join ` K ) |
| 3 |
|
4at.a |
|- A = ( Atoms ` K ) |
| 4 |
|
simpl11 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. HL ) |
| 5 |
4
|
hllatd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. Lat ) |
| 6 |
|
simpl12 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. A ) |
| 7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 8 |
7 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 9 |
6 8
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. ( Base ` K ) ) |
| 10 |
|
simpl13 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. A ) |
| 11 |
7 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 12 |
10 11
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. ( Base ` K ) ) |
| 13 |
|
simpl23 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> T e. A ) |
| 14 |
|
simpl31 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> U e. A ) |
| 15 |
7 2 3
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) ) |
| 16 |
4 13 14 15
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( T .\/ U ) e. ( Base ` K ) ) |
| 17 |
|
simpl32 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> V e. A ) |
| 18 |
|
simpl33 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> W e. A ) |
| 19 |
7 2 3
|
hlatjcl |
|- ( ( K e. HL /\ V e. A /\ W e. A ) -> ( V .\/ W ) e. ( Base ` K ) ) |
| 20 |
4 17 18 19
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( V .\/ W ) e. ( Base ` K ) ) |
| 21 |
7 2
|
latjcl |
|- ( ( K e. Lat /\ ( T .\/ U ) e. ( Base ` K ) /\ ( V .\/ W ) e. ( Base ` K ) ) -> ( ( T .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) |
| 22 |
5 16 20 21
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( T .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) |
| 23 |
7 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ ( ( T .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 24 |
5 9 12 22 23
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 25 |
|
simpl21 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. A ) |
| 26 |
7 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 27 |
25 26
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. ( Base ` K ) ) |
| 28 |
|
simpl22 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. A ) |
| 29 |
7 3
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 30 |
28 29
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. ( Base ` K ) ) |
| 31 |
7 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ S e. ( Base ` K ) /\ ( ( T .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 32 |
5 27 30 22 31
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 33 |
24 32
|
anbi12d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) <-> ( ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 34 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ P e. A /\ Q e. A ) ) |
| 35 |
7 2 3
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 36 |
34 35
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 37 |
7 2 3
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) |
| 38 |
4 25 28 37
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R .\/ S ) e. ( Base ` K ) ) |
| 39 |
7 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( R .\/ S ) e. ( Base ` K ) /\ ( ( T .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 40 |
5 36 38 22 39
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 41 |
33 40
|
bitrd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) <-> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 42 |
|
simp1l |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) |
| 43 |
|
simp1r |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
| 44 |
|
simp2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> -. P .<_ ( ( U .\/ V ) .\/ W ) ) |
| 45 |
|
simp3 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 46 |
1 2 3
|
4atlem12b |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 47 |
42 43 44 45 46
|
syl121anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 48 |
47
|
3exp |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. P .<_ ( ( U .\/ V ) .\/ W ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 49 |
7 2
|
latj4rot |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) /\ ( S e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( ( Q .\/ R ) .\/ ( S .\/ P ) ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) ) |
| 50 |
5 12 27 30 9 49
|
syl122anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .\/ R ) .\/ ( S .\/ P ) ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) ) |
| 51 |
50
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( Q .\/ R ) .\/ ( S .\/ P ) ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) ) |
| 52 |
4 10 25
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ Q e. A /\ R e. A ) ) |
| 53 |
28 6 13
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S e. A /\ P e. A /\ T e. A ) ) |
| 54 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( U e. A /\ V e. A /\ W e. A ) ) |
| 55 |
52 53 54
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( K e. HL /\ Q e. A /\ R e. A ) /\ ( S e. A /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) |
| 56 |
55
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( K e. HL /\ Q e. A /\ R e. A ) /\ ( S e. A /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) |
| 57 |
|
simpr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
| 58 |
1 2 3
|
4noncolr3 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) ) |
| 59 |
34 25 28 57 58
|
syl121anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) ) |
| 60 |
59
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) ) |
| 61 |
|
simp2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> -. Q .<_ ( ( U .\/ V ) .\/ W ) ) |
| 62 |
|
simprlr |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 63 |
|
simprrl |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 64 |
62 63
|
jca |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 65 |
|
simprrr |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 66 |
|
simprll |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 67 |
64 65 66
|
jca32 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 68 |
67
|
3adant2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 69 |
1 2 3
|
4atlem12b |
|- ( ( ( ( K e. HL /\ Q e. A /\ R e. A ) /\ ( S e. A /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( Q =/= R /\ -. S .<_ ( Q .\/ R ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) ) /\ ( ( Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( Q .\/ R ) .\/ ( S .\/ P ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 70 |
56 60 61 68 69
|
syl121anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( Q .\/ R ) .\/ ( S .\/ P ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 71 |
51 70
|
eqtr3d |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 72 |
71
|
3exp |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. Q .<_ ( ( U .\/ V ) .\/ W ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 73 |
48 72
|
jaod |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( -. P .<_ ( ( U .\/ V ) .\/ W ) \/ -. Q .<_ ( ( U .\/ V ) .\/ W ) ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 74 |
7 2
|
latjcom |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( R .\/ S ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( R .\/ S ) .\/ ( P .\/ Q ) ) ) |
| 75 |
5 36 38 74
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( R .\/ S ) .\/ ( P .\/ Q ) ) ) |
| 76 |
75
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( R .\/ S ) .\/ ( P .\/ Q ) ) ) |
| 77 |
4 25 28
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ R e. A /\ S e. A ) ) |
| 78 |
6 10 13
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P e. A /\ Q e. A /\ T e. A ) ) |
| 79 |
77 78 54
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( K e. HL /\ R e. A /\ S e. A ) /\ ( P e. A /\ Q e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) |
| 80 |
79
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( K e. HL /\ R e. A /\ S e. A ) /\ ( P e. A /\ Q e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) |
| 81 |
1 2 3
|
4noncolr2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R =/= S /\ -. P .<_ ( R .\/ S ) /\ -. Q .<_ ( ( R .\/ S ) .\/ P ) ) ) |
| 82 |
34 25 28 57 81
|
syl121anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R =/= S /\ -. P .<_ ( R .\/ S ) /\ -. Q .<_ ( ( R .\/ S ) .\/ P ) ) ) |
| 83 |
82
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( R =/= S /\ -. P .<_ ( R .\/ S ) /\ -. Q .<_ ( ( R .\/ S ) .\/ P ) ) ) |
| 84 |
|
simp2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> -. R .<_ ( ( U .\/ V ) .\/ W ) ) |
| 85 |
|
simprr |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 86 |
|
simprl |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 87 |
85 86
|
jca |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 88 |
87
|
3adant2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 89 |
1 2 3
|
4atlem12b |
|- ( ( ( ( K e. HL /\ R e. A /\ S e. A ) /\ ( P e. A /\ Q e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( R =/= S /\ -. P .<_ ( R .\/ S ) /\ -. Q .<_ ( ( R .\/ S ) .\/ P ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) ) /\ ( ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( R .\/ S ) .\/ ( P .\/ Q ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 90 |
80 83 84 88 89
|
syl121anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( R .\/ S ) .\/ ( P .\/ Q ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 91 |
76 90
|
eqtrd |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 92 |
91
|
3exp |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. R .<_ ( ( U .\/ V ) .\/ W ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 93 |
7 2
|
latj4rot |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ ( R e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( S .\/ P ) .\/ ( Q .\/ R ) ) ) |
| 94 |
5 9 12 27 30 93
|
syl122anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( S .\/ P ) .\/ ( Q .\/ R ) ) ) |
| 95 |
94
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( S .\/ P ) .\/ ( Q .\/ R ) ) ) |
| 96 |
4 28 6
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ S e. A /\ P e. A ) ) |
| 97 |
10 25 13
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( Q e. A /\ R e. A /\ T e. A ) ) |
| 98 |
96 97 54
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( K e. HL /\ S e. A /\ P e. A ) /\ ( Q e. A /\ R e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) |
| 99 |
98
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( K e. HL /\ S e. A /\ P e. A ) /\ ( Q e. A /\ R e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) |
| 100 |
1 2 3
|
4noncolr1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S =/= P /\ -. Q .<_ ( S .\/ P ) /\ -. R .<_ ( ( S .\/ P ) .\/ Q ) ) ) |
| 101 |
34 25 28 57 100
|
syl121anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S =/= P /\ -. Q .<_ ( S .\/ P ) /\ -. R .<_ ( ( S .\/ P ) .\/ Q ) ) ) |
| 102 |
101
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( S =/= P /\ -. Q .<_ ( S .\/ P ) /\ -. R .<_ ( ( S .\/ P ) .\/ Q ) ) ) |
| 103 |
|
simp2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> -. S .<_ ( ( U .\/ V ) .\/ W ) ) |
| 104 |
65 66
|
jca |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 105 |
104 62 63
|
jca32 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 106 |
105
|
3adant2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 107 |
1 2 3
|
4atlem12b |
|- ( ( ( ( K e. HL /\ S e. A /\ P e. A ) /\ ( Q e. A /\ R e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( S =/= P /\ -. Q .<_ ( S .\/ P ) /\ -. R .<_ ( ( S .\/ P ) .\/ Q ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) ) /\ ( ( S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( S .\/ P ) .\/ ( Q .\/ R ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 108 |
99 102 103 106 107
|
syl121anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( S .\/ P ) .\/ ( Q .\/ R ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 109 |
95 108
|
eqtrd |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) |
| 110 |
109
|
3exp |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. S .<_ ( ( U .\/ V ) .\/ W ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 111 |
92 110
|
jaod |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( -. R .<_ ( ( U .\/ V ) .\/ W ) \/ -. S .<_ ( ( U .\/ V ) .\/ W ) ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 112 |
25 28 14
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R e. A /\ S e. A /\ U e. A ) ) |
| 113 |
17 18
|
jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( V e. A /\ W e. A ) ) |
| 114 |
1 2 3
|
4atlem3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ U e. A ) /\ ( V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( -. P .<_ ( ( U .\/ V ) .\/ W ) \/ -. Q .<_ ( ( U .\/ V ) .\/ W ) ) \/ ( -. R .<_ ( ( U .\/ V ) .\/ W ) \/ -. S .<_ ( ( U .\/ V ) .\/ W ) ) ) ) |
| 115 |
34 112 113 57 114
|
syl31anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( -. P .<_ ( ( U .\/ V ) .\/ W ) \/ -. Q .<_ ( ( U .\/ V ) .\/ W ) ) \/ ( -. R .<_ ( ( U .\/ V ) .\/ W ) \/ -. S .<_ ( ( U .\/ V ) .\/ W ) ) ) ) |
| 116 |
73 111 115
|
mpjaod |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 117 |
41 116
|
sylbird |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ ( R .\/ S ) ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) |