| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aalioulem1.a |  |-  ( ph -> F e. ( Poly ` ZZ ) ) | 
						
							| 2 |  | aalioulem1.b |  |-  ( ph -> X e. ZZ ) | 
						
							| 3 |  | aalioulem1.c |  |-  ( ph -> Y e. NN ) | 
						
							| 4 | 2 | zcnd |  |-  ( ph -> X e. CC ) | 
						
							| 5 | 3 | nncnd |  |-  ( ph -> Y e. CC ) | 
						
							| 6 | 3 | nnne0d |  |-  ( ph -> Y =/= 0 ) | 
						
							| 7 | 4 5 6 | divcld |  |-  ( ph -> ( X / Y ) e. CC ) | 
						
							| 8 |  | eqid |  |-  ( coeff ` F ) = ( coeff ` F ) | 
						
							| 9 |  | eqid |  |-  ( deg ` F ) = ( deg ` F ) | 
						
							| 10 | 8 9 | coeid2 |  |-  ( ( F e. ( Poly ` ZZ ) /\ ( X / Y ) e. CC ) -> ( F ` ( X / Y ) ) = sum_ a e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) ) | 
						
							| 11 | 1 7 10 | syl2anc |  |-  ( ph -> ( F ` ( X / Y ) ) = sum_ a e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( ph -> ( ( F ` ( X / Y ) ) x. ( Y ^ ( deg ` F ) ) ) = ( sum_ a e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) ) | 
						
							| 13 |  | fzfid |  |-  ( ph -> ( 0 ... ( deg ` F ) ) e. Fin ) | 
						
							| 14 |  | dgrcl |  |-  ( F e. ( Poly ` ZZ ) -> ( deg ` F ) e. NN0 ) | 
						
							| 15 | 1 14 | syl |  |-  ( ph -> ( deg ` F ) e. NN0 ) | 
						
							| 16 | 5 15 | expcld |  |-  ( ph -> ( Y ^ ( deg ` F ) ) e. CC ) | 
						
							| 17 |  | 0z |  |-  0 e. ZZ | 
						
							| 18 | 8 | coef2 |  |-  ( ( F e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> ( coeff ` F ) : NN0 --> ZZ ) | 
						
							| 19 | 1 17 18 | sylancl |  |-  ( ph -> ( coeff ` F ) : NN0 --> ZZ ) | 
						
							| 20 |  | elfznn0 |  |-  ( a e. ( 0 ... ( deg ` F ) ) -> a e. NN0 ) | 
						
							| 21 |  | ffvelcdm |  |-  ( ( ( coeff ` F ) : NN0 --> ZZ /\ a e. NN0 ) -> ( ( coeff ` F ) ` a ) e. ZZ ) | 
						
							| 22 | 19 20 21 | syl2an |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( coeff ` F ) ` a ) e. ZZ ) | 
						
							| 23 | 22 | zcnd |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( coeff ` F ) ` a ) e. CC ) | 
						
							| 24 |  | expcl |  |-  ( ( ( X / Y ) e. CC /\ a e. NN0 ) -> ( ( X / Y ) ^ a ) e. CC ) | 
						
							| 25 | 7 20 24 | syl2an |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( X / Y ) ^ a ) e. CC ) | 
						
							| 26 | 23 25 | mulcld |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) e. CC ) | 
						
							| 27 | 13 16 26 | fsummulc1 |  |-  ( ph -> ( sum_ a e. ( 0 ... ( deg ` F ) ) ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) = sum_ a e. ( 0 ... ( deg ` F ) ) ( ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) ) | 
						
							| 28 | 12 27 | eqtrd |  |-  ( ph -> ( ( F ` ( X / Y ) ) x. ( Y ^ ( deg ` F ) ) ) = sum_ a e. ( 0 ... ( deg ` F ) ) ( ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) ) | 
						
							| 29 | 5 | adantr |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> Y e. CC ) | 
						
							| 30 | 15 | adantr |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( deg ` F ) e. NN0 ) | 
						
							| 31 | 29 30 | expcld |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( Y ^ ( deg ` F ) ) e. CC ) | 
						
							| 32 | 23 25 31 | mulassd |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) = ( ( ( coeff ` F ) ` a ) x. ( ( ( X / Y ) ^ a ) x. ( Y ^ ( deg ` F ) ) ) ) ) | 
						
							| 33 | 2 | adantr |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> X e. ZZ ) | 
						
							| 34 | 33 | zcnd |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> X e. CC ) | 
						
							| 35 | 6 | adantr |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> Y =/= 0 ) | 
						
							| 36 | 20 | adantl |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> a e. NN0 ) | 
						
							| 37 | 34 29 35 36 | expdivd |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( X / Y ) ^ a ) = ( ( X ^ a ) / ( Y ^ a ) ) ) | 
						
							| 38 | 37 | oveq1d |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( X / Y ) ^ a ) x. ( Y ^ ( deg ` F ) ) ) = ( ( ( X ^ a ) / ( Y ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) ) | 
						
							| 39 | 34 36 | expcld |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( X ^ a ) e. CC ) | 
						
							| 40 |  | nnexpcl |  |-  ( ( Y e. NN /\ a e. NN0 ) -> ( Y ^ a ) e. NN ) | 
						
							| 41 | 3 20 40 | syl2an |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( Y ^ a ) e. NN ) | 
						
							| 42 | 41 | nncnd |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( Y ^ a ) e. CC ) | 
						
							| 43 | 41 | nnne0d |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( Y ^ a ) =/= 0 ) | 
						
							| 44 | 39 42 31 43 | div13d |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( X ^ a ) / ( Y ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) = ( ( ( Y ^ ( deg ` F ) ) / ( Y ^ a ) ) x. ( X ^ a ) ) ) | 
						
							| 45 | 38 44 | eqtrd |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( X / Y ) ^ a ) x. ( Y ^ ( deg ` F ) ) ) = ( ( ( Y ^ ( deg ` F ) ) / ( Y ^ a ) ) x. ( X ^ a ) ) ) | 
						
							| 46 |  | elfzelz |  |-  ( a e. ( 0 ... ( deg ` F ) ) -> a e. ZZ ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> a e. ZZ ) | 
						
							| 48 | 30 | nn0zd |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( deg ` F ) e. ZZ ) | 
						
							| 49 | 29 35 47 48 | expsubd |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( Y ^ ( ( deg ` F ) - a ) ) = ( ( Y ^ ( deg ` F ) ) / ( Y ^ a ) ) ) | 
						
							| 50 | 3 | adantr |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> Y e. NN ) | 
						
							| 51 | 50 | nnzd |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> Y e. ZZ ) | 
						
							| 52 |  | fznn0sub |  |-  ( a e. ( 0 ... ( deg ` F ) ) -> ( ( deg ` F ) - a ) e. NN0 ) | 
						
							| 53 | 52 | adantl |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( deg ` F ) - a ) e. NN0 ) | 
						
							| 54 |  | zexpcl |  |-  ( ( Y e. ZZ /\ ( ( deg ` F ) - a ) e. NN0 ) -> ( Y ^ ( ( deg ` F ) - a ) ) e. ZZ ) | 
						
							| 55 | 51 53 54 | syl2anc |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( Y ^ ( ( deg ` F ) - a ) ) e. ZZ ) | 
						
							| 56 | 49 55 | eqeltrrd |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( Y ^ ( deg ` F ) ) / ( Y ^ a ) ) e. ZZ ) | 
						
							| 57 |  | zexpcl |  |-  ( ( X e. ZZ /\ a e. NN0 ) -> ( X ^ a ) e. ZZ ) | 
						
							| 58 | 2 20 57 | syl2an |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( X ^ a ) e. ZZ ) | 
						
							| 59 | 56 58 | zmulcld |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( Y ^ ( deg ` F ) ) / ( Y ^ a ) ) x. ( X ^ a ) ) e. ZZ ) | 
						
							| 60 | 45 59 | eqeltrd |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( X / Y ) ^ a ) x. ( Y ^ ( deg ` F ) ) ) e. ZZ ) | 
						
							| 61 | 22 60 | zmulcld |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( coeff ` F ) ` a ) x. ( ( ( X / Y ) ^ a ) x. ( Y ^ ( deg ` F ) ) ) ) e. ZZ ) | 
						
							| 62 | 32 61 | eqeltrd |  |-  ( ( ph /\ a e. ( 0 ... ( deg ` F ) ) ) -> ( ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) e. ZZ ) | 
						
							| 63 | 13 62 | fsumzcl |  |-  ( ph -> sum_ a e. ( 0 ... ( deg ` F ) ) ( ( ( ( coeff ` F ) ` a ) x. ( ( X / Y ) ^ a ) ) x. ( Y ^ ( deg ` F ) ) ) e. ZZ ) | 
						
							| 64 | 28 63 | eqeltrd |  |-  ( ph -> ( ( F ` ( X / Y ) ) x. ( Y ^ ( deg ` F ) ) ) e. ZZ ) |