| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aalioulem2.a |
|- N = ( deg ` F ) |
| 2 |
|
aalioulem2.b |
|- ( ph -> F e. ( Poly ` ZZ ) ) |
| 3 |
|
aalioulem2.c |
|- ( ph -> N e. NN ) |
| 4 |
|
aalioulem2.d |
|- ( ph -> A e. RR ) |
| 5 |
|
1rp |
|- 1 e. RR+ |
| 6 |
|
snssi |
|- ( 1 e. RR+ -> { 1 } C_ RR+ ) |
| 7 |
5 6
|
ax-mp |
|- { 1 } C_ RR+ |
| 8 |
|
ssrab2 |
|- { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } C_ RR+ |
| 9 |
7 8
|
unssi |
|- ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) C_ RR+ |
| 10 |
|
ltso |
|- < Or RR |
| 11 |
10
|
a1i |
|- ( ph -> < Or RR ) |
| 12 |
|
snfi |
|- { 1 } e. Fin |
| 13 |
3
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 14 |
1
|
eqcomi |
|- ( deg ` F ) = N |
| 15 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
| 16 |
13 14 15
|
3netr4g |
|- ( ph -> ( deg ` F ) =/= ( deg ` 0p ) ) |
| 17 |
|
fveq2 |
|- ( F = 0p -> ( deg ` F ) = ( deg ` 0p ) ) |
| 18 |
17
|
necon3i |
|- ( ( deg ` F ) =/= ( deg ` 0p ) -> F =/= 0p ) |
| 19 |
16 18
|
syl |
|- ( ph -> F =/= 0p ) |
| 20 |
|
eqid |
|- ( `' F " { 0 } ) = ( `' F " { 0 } ) |
| 21 |
20
|
fta1 |
|- ( ( F e. ( Poly ` ZZ ) /\ F =/= 0p ) -> ( ( `' F " { 0 } ) e. Fin /\ ( # ` ( `' F " { 0 } ) ) <_ ( deg ` F ) ) ) |
| 22 |
2 19 21
|
syl2anc |
|- ( ph -> ( ( `' F " { 0 } ) e. Fin /\ ( # ` ( `' F " { 0 } ) ) <_ ( deg ` F ) ) ) |
| 23 |
22
|
simpld |
|- ( ph -> ( `' F " { 0 } ) e. Fin ) |
| 24 |
|
abrexfi |
|- ( ( `' F " { 0 } ) e. Fin -> { a | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } e. Fin ) |
| 25 |
23 24
|
syl |
|- ( ph -> { a | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } e. Fin ) |
| 26 |
|
rabssab |
|- { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } C_ { a | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } |
| 27 |
|
ssfi |
|- ( ( { a | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } e. Fin /\ { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } C_ { a | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) -> { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } e. Fin ) |
| 28 |
25 26 27
|
sylancl |
|- ( ph -> { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } e. Fin ) |
| 29 |
|
unfi |
|- ( ( { 1 } e. Fin /\ { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } e. Fin ) -> ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) e. Fin ) |
| 30 |
12 28 29
|
sylancr |
|- ( ph -> ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) e. Fin ) |
| 31 |
|
1ex |
|- 1 e. _V |
| 32 |
31
|
snid |
|- 1 e. { 1 } |
| 33 |
|
elun1 |
|- ( 1 e. { 1 } -> 1 e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) ) |
| 34 |
|
ne0i |
|- ( 1 e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) -> ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) =/= (/) ) |
| 35 |
32 33 34
|
mp2b |
|- ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) =/= (/) |
| 36 |
35
|
a1i |
|- ( ph -> ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) =/= (/) ) |
| 37 |
|
rpssre |
|- RR+ C_ RR |
| 38 |
9 37
|
sstri |
|- ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) C_ RR |
| 39 |
38
|
a1i |
|- ( ph -> ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) C_ RR ) |
| 40 |
|
fiinfcl |
|- ( ( < Or RR /\ ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) e. Fin /\ ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) =/= (/) /\ ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) C_ RR ) ) -> inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) ) |
| 41 |
11 30 36 39 40
|
syl13anc |
|- ( ph -> inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) ) |
| 42 |
9 41
|
sselid |
|- ( ph -> inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) e. RR+ ) |
| 43 |
|
0re |
|- 0 e. RR |
| 44 |
|
rpge0 |
|- ( d e. RR+ -> 0 <_ d ) |
| 45 |
44
|
rgen |
|- A. d e. RR+ 0 <_ d |
| 46 |
|
breq1 |
|- ( c = 0 -> ( c <_ d <-> 0 <_ d ) ) |
| 47 |
46
|
ralbidv |
|- ( c = 0 -> ( A. d e. RR+ c <_ d <-> A. d e. RR+ 0 <_ d ) ) |
| 48 |
47
|
rspcev |
|- ( ( 0 e. RR /\ A. d e. RR+ 0 <_ d ) -> E. c e. RR A. d e. RR+ c <_ d ) |
| 49 |
43 45 48
|
mp2an |
|- E. c e. RR A. d e. RR+ c <_ d |
| 50 |
|
ssralv |
|- ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) C_ RR+ -> ( A. d e. RR+ c <_ d -> A. d e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) c <_ d ) ) |
| 51 |
9 50
|
ax-mp |
|- ( A. d e. RR+ c <_ d -> A. d e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) c <_ d ) |
| 52 |
51
|
reximi |
|- ( E. c e. RR A. d e. RR+ c <_ d -> E. c e. RR A. d e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) c <_ d ) |
| 53 |
49 52
|
ax-mp |
|- E. c e. RR A. d e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) c <_ d |
| 54 |
|
eqeq1 |
|- ( a = ( abs ` ( A - r ) ) -> ( a = ( abs ` ( A - b ) ) <-> ( abs ` ( A - r ) ) = ( abs ` ( A - b ) ) ) ) |
| 55 |
54
|
rexbidv |
|- ( a = ( abs ` ( A - r ) ) -> ( E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) <-> E. b e. ( `' F " { 0 } ) ( abs ` ( A - r ) ) = ( abs ` ( A - b ) ) ) ) |
| 56 |
4
|
ad2antrr |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> A e. RR ) |
| 57 |
|
simplr |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> r e. RR ) |
| 58 |
56 57
|
resubcld |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( A - r ) e. RR ) |
| 59 |
58
|
recnd |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( A - r ) e. CC ) |
| 60 |
4
|
ad2antrr |
|- ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> A e. RR ) |
| 61 |
60
|
recnd |
|- ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> A e. CC ) |
| 62 |
|
simplr |
|- ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> r e. RR ) |
| 63 |
62
|
recnd |
|- ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> r e. CC ) |
| 64 |
61 63
|
subeq0ad |
|- ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> ( ( A - r ) = 0 <-> A = r ) ) |
| 65 |
64
|
necon3abid |
|- ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> ( ( A - r ) =/= 0 <-> -. A = r ) ) |
| 66 |
65
|
biimprd |
|- ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> ( -. A = r -> ( A - r ) =/= 0 ) ) |
| 67 |
66
|
impr |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( A - r ) =/= 0 ) |
| 68 |
59 67
|
absrpcld |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( abs ` ( A - r ) ) e. RR+ ) |
| 69 |
57
|
recnd |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> r e. CC ) |
| 70 |
|
simprl |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( F ` r ) = 0 ) |
| 71 |
|
plyf |
|- ( F e. ( Poly ` ZZ ) -> F : CC --> CC ) |
| 72 |
2 71
|
syl |
|- ( ph -> F : CC --> CC ) |
| 73 |
72
|
ffnd |
|- ( ph -> F Fn CC ) |
| 74 |
73
|
ad2antrr |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> F Fn CC ) |
| 75 |
|
fniniseg |
|- ( F Fn CC -> ( r e. ( `' F " { 0 } ) <-> ( r e. CC /\ ( F ` r ) = 0 ) ) ) |
| 76 |
74 75
|
syl |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( r e. ( `' F " { 0 } ) <-> ( r e. CC /\ ( F ` r ) = 0 ) ) ) |
| 77 |
69 70 76
|
mpbir2and |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> r e. ( `' F " { 0 } ) ) |
| 78 |
|
eqid |
|- ( abs ` ( A - r ) ) = ( abs ` ( A - r ) ) |
| 79 |
|
oveq2 |
|- ( b = r -> ( A - b ) = ( A - r ) ) |
| 80 |
79
|
fveq2d |
|- ( b = r -> ( abs ` ( A - b ) ) = ( abs ` ( A - r ) ) ) |
| 81 |
80
|
rspceeqv |
|- ( ( r e. ( `' F " { 0 } ) /\ ( abs ` ( A - r ) ) = ( abs ` ( A - r ) ) ) -> E. b e. ( `' F " { 0 } ) ( abs ` ( A - r ) ) = ( abs ` ( A - b ) ) ) |
| 82 |
77 78 81
|
sylancl |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> E. b e. ( `' F " { 0 } ) ( abs ` ( A - r ) ) = ( abs ` ( A - b ) ) ) |
| 83 |
55 68 82
|
elrabd |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( abs ` ( A - r ) ) e. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) |
| 84 |
|
elun2 |
|- ( ( abs ` ( A - r ) ) e. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } -> ( abs ` ( A - r ) ) e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) ) |
| 85 |
83 84
|
syl |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> ( abs ` ( A - r ) ) e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) ) |
| 86 |
|
infrelb |
|- ( ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) C_ RR /\ E. c e. RR A. d e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) c <_ d /\ ( abs ` ( A - r ) ) e. ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) ) -> inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) |
| 87 |
38 53 85 86
|
mp3an12i |
|- ( ( ( ph /\ r e. RR ) /\ ( ( F ` r ) = 0 /\ -. A = r ) ) -> inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) |
| 88 |
87
|
expr |
|- ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> ( -. A = r -> inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) |
| 89 |
88
|
orrd |
|- ( ( ( ph /\ r e. RR ) /\ ( F ` r ) = 0 ) -> ( A = r \/ inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) |
| 90 |
89
|
ex |
|- ( ( ph /\ r e. RR ) -> ( ( F ` r ) = 0 -> ( A = r \/ inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) ) |
| 91 |
90
|
ralrimiva |
|- ( ph -> A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) ) |
| 92 |
|
breq1 |
|- ( x = inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) -> ( x <_ ( abs ` ( A - r ) ) <-> inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) |
| 93 |
92
|
orbi2d |
|- ( x = inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) -> ( ( A = r \/ x <_ ( abs ` ( A - r ) ) ) <-> ( A = r \/ inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) ) |
| 94 |
93
|
imbi2d |
|- ( x = inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) -> ( ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) <-> ( ( F ` r ) = 0 -> ( A = r \/ inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) ) ) |
| 95 |
94
|
ralbidv |
|- ( x = inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) -> ( A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) <-> A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) ) ) |
| 96 |
95
|
rspcev |
|- ( ( inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) e. RR+ /\ A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ inf ( ( { 1 } u. { a e. RR+ | E. b e. ( `' F " { 0 } ) a = ( abs ` ( A - b ) ) } ) , RR , < ) <_ ( abs ` ( A - r ) ) ) ) ) -> E. x e. RR+ A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) ) |
| 97 |
42 91 96
|
syl2anc |
|- ( ph -> E. x e. RR+ A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) ) |
| 98 |
|
fveqeq2 |
|- ( r = ( p / q ) -> ( ( F ` r ) = 0 <-> ( F ` ( p / q ) ) = 0 ) ) |
| 99 |
|
eqeq2 |
|- ( r = ( p / q ) -> ( A = r <-> A = ( p / q ) ) ) |
| 100 |
|
oveq2 |
|- ( r = ( p / q ) -> ( A - r ) = ( A - ( p / q ) ) ) |
| 101 |
100
|
fveq2d |
|- ( r = ( p / q ) -> ( abs ` ( A - r ) ) = ( abs ` ( A - ( p / q ) ) ) ) |
| 102 |
101
|
breq2d |
|- ( r = ( p / q ) -> ( x <_ ( abs ` ( A - r ) ) <-> x <_ ( abs ` ( A - ( p / q ) ) ) ) ) |
| 103 |
99 102
|
orbi12d |
|- ( r = ( p / q ) -> ( ( A = r \/ x <_ ( abs ` ( A - r ) ) ) <-> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) |
| 104 |
98 103
|
imbi12d |
|- ( r = ( p / q ) -> ( ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) <-> ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) ) |
| 105 |
104
|
rspcv |
|- ( ( p / q ) e. RR -> ( A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) -> ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) ) |
| 106 |
|
znq |
|- ( ( p e. ZZ /\ q e. NN ) -> ( p / q ) e. QQ ) |
| 107 |
|
qre |
|- ( ( p / q ) e. QQ -> ( p / q ) e. RR ) |
| 108 |
106 107
|
syl |
|- ( ( p e. ZZ /\ q e. NN ) -> ( p / q ) e. RR ) |
| 109 |
105 108
|
syl11 |
|- ( A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) -> ( ( p e. ZZ /\ q e. NN ) -> ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) ) |
| 110 |
109
|
ralrimivv |
|- ( A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) -> A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) |
| 111 |
110
|
reximi |
|- ( E. x e. RR+ A. r e. RR ( ( F ` r ) = 0 -> ( A = r \/ x <_ ( abs ` ( A - r ) ) ) ) -> E. x e. RR+ A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) |
| 112 |
97 111
|
syl |
|- ( ph -> E. x e. RR+ A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) |
| 113 |
|
simplr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> x e. RR+ ) |
| 114 |
|
simprr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> q e. NN ) |
| 115 |
3
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 116 |
115
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> N e. NN0 ) |
| 117 |
114 116
|
nnexpcld |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( q ^ N ) e. NN ) |
| 118 |
117
|
nnrpd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( q ^ N ) e. RR+ ) |
| 119 |
113 118
|
rpdivcld |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( x / ( q ^ N ) ) e. RR+ ) |
| 120 |
119
|
rpred |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( x / ( q ^ N ) ) e. RR ) |
| 121 |
120
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> ( x / ( q ^ N ) ) e. RR ) |
| 122 |
|
simpllr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> x e. RR+ ) |
| 123 |
122
|
rpred |
|- ( ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> x e. RR ) |
| 124 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> A e. RR ) |
| 125 |
108
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( p / q ) e. RR ) |
| 126 |
124 125
|
resubcld |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( A - ( p / q ) ) e. RR ) |
| 127 |
126
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( A - ( p / q ) ) e. CC ) |
| 128 |
127
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( abs ` ( A - ( p / q ) ) ) e. RR ) |
| 129 |
128
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> ( abs ` ( A - ( p / q ) ) ) e. RR ) |
| 130 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 131 |
130
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> x e. RR ) |
| 132 |
113
|
rpcnne0d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( x e. CC /\ x =/= 0 ) ) |
| 133 |
|
divid |
|- ( ( x e. CC /\ x =/= 0 ) -> ( x / x ) = 1 ) |
| 134 |
132 133
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( x / x ) = 1 ) |
| 135 |
117
|
nnge1d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> 1 <_ ( q ^ N ) ) |
| 136 |
134 135
|
eqbrtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( x / x ) <_ ( q ^ N ) ) |
| 137 |
131 113 118 136
|
lediv23d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( x / ( q ^ N ) ) <_ x ) |
| 138 |
137
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> ( x / ( q ^ N ) ) <_ x ) |
| 139 |
|
simpr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> x <_ ( abs ` ( A - ( p / q ) ) ) ) |
| 140 |
121 123 129 138 139
|
letrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) /\ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> ( x / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) |
| 141 |
140
|
ex |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( x <_ ( abs ` ( A - ( p / q ) ) ) -> ( x / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) |
| 142 |
141
|
orim2d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) -> ( A = ( p / q ) \/ ( x / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) |
| 143 |
142
|
imim2d |
|- ( ( ( ph /\ x e. RR+ ) /\ ( p e. ZZ /\ q e. NN ) ) -> ( ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) -> ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ ( x / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) ) |
| 144 |
143
|
ralimdvva |
|- ( ( ph /\ x e. RR+ ) -> ( A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) -> A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ ( x / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) ) |
| 145 |
144
|
reximdva |
|- ( ph -> ( E. x e. RR+ A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ x <_ ( abs ` ( A - ( p / q ) ) ) ) ) -> E. x e. RR+ A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ ( x / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) ) |
| 146 |
112 145
|
mpd |
|- ( ph -> E. x e. RR+ A. p e. ZZ A. q e. NN ( ( F ` ( p / q ) ) = 0 -> ( A = ( p / q ) \/ ( x / ( q ^ N ) ) <_ ( abs ` ( A - ( p / q ) ) ) ) ) ) |