| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aalioulem1.a |
|
| 2 |
|
aalioulem1.b |
|
| 3 |
|
aalioulem1.c |
|
| 4 |
2
|
zcnd |
|
| 5 |
3
|
nncnd |
|
| 6 |
3
|
nnne0d |
|
| 7 |
4 5 6
|
divcld |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
8 9
|
coeid2 |
|
| 11 |
1 7 10
|
syl2anc |
|
| 12 |
11
|
oveq1d |
|
| 13 |
|
fzfid |
|
| 14 |
|
dgrcl |
|
| 15 |
1 14
|
syl |
|
| 16 |
5 15
|
expcld |
|
| 17 |
|
0z |
|
| 18 |
8
|
coef2 |
|
| 19 |
1 17 18
|
sylancl |
|
| 20 |
|
elfznn0 |
|
| 21 |
|
ffvelcdm |
|
| 22 |
19 20 21
|
syl2an |
|
| 23 |
22
|
zcnd |
|
| 24 |
|
expcl |
|
| 25 |
7 20 24
|
syl2an |
|
| 26 |
23 25
|
mulcld |
|
| 27 |
13 16 26
|
fsummulc1 |
|
| 28 |
12 27
|
eqtrd |
|
| 29 |
5
|
adantr |
|
| 30 |
15
|
adantr |
|
| 31 |
29 30
|
expcld |
|
| 32 |
23 25 31
|
mulassd |
|
| 33 |
2
|
adantr |
|
| 34 |
33
|
zcnd |
|
| 35 |
6
|
adantr |
|
| 36 |
20
|
adantl |
|
| 37 |
34 29 35 36
|
expdivd |
|
| 38 |
37
|
oveq1d |
|
| 39 |
34 36
|
expcld |
|
| 40 |
|
nnexpcl |
|
| 41 |
3 20 40
|
syl2an |
|
| 42 |
41
|
nncnd |
|
| 43 |
41
|
nnne0d |
|
| 44 |
39 42 31 43
|
div13d |
|
| 45 |
38 44
|
eqtrd |
|
| 46 |
|
elfzelz |
|
| 47 |
46
|
adantl |
|
| 48 |
30
|
nn0zd |
|
| 49 |
29 35 47 48
|
expsubd |
|
| 50 |
3
|
adantr |
|
| 51 |
50
|
nnzd |
|
| 52 |
|
fznn0sub |
|
| 53 |
52
|
adantl |
|
| 54 |
|
zexpcl |
|
| 55 |
51 53 54
|
syl2anc |
|
| 56 |
49 55
|
eqeltrrd |
|
| 57 |
|
zexpcl |
|
| 58 |
2 20 57
|
syl2an |
|
| 59 |
56 58
|
zmulcld |
|
| 60 |
45 59
|
eqeltrd |
|
| 61 |
22 60
|
zmulcld |
|
| 62 |
32 61
|
eqeltrd |
|
| 63 |
13 62
|
fsumzcl |
|
| 64 |
28 63
|
eqeltrd |
|