| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aalioulem1.a | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 2 |  | aalioulem1.b | ⊢ ( 𝜑  →  𝑋  ∈  ℤ ) | 
						
							| 3 |  | aalioulem1.c | ⊢ ( 𝜑  →  𝑌  ∈  ℕ ) | 
						
							| 4 | 2 | zcnd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 5 | 3 | nncnd | ⊢ ( 𝜑  →  𝑌  ∈  ℂ ) | 
						
							| 6 | 3 | nnne0d | ⊢ ( 𝜑  →  𝑌  ≠  0 ) | 
						
							| 7 | 4 5 6 | divcld | ⊢ ( 𝜑  →  ( 𝑋  /  𝑌 )  ∈  ℂ ) | 
						
							| 8 |  | eqid | ⊢ ( coeff ‘ 𝐹 )  =  ( coeff ‘ 𝐹 ) | 
						
							| 9 |  | eqid | ⊢ ( deg ‘ 𝐹 )  =  ( deg ‘ 𝐹 ) | 
						
							| 10 | 8 9 | coeid2 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℤ )  ∧  ( 𝑋  /  𝑌 )  ∈  ℂ )  →  ( 𝐹 ‘ ( 𝑋  /  𝑌 ) )  =  Σ 𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ·  ( ( 𝑋  /  𝑌 ) ↑ 𝑎 ) ) ) | 
						
							| 11 | 1 7 10 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝑋  /  𝑌 ) )  =  Σ 𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ·  ( ( 𝑋  /  𝑌 ) ↑ 𝑎 ) ) ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ ( 𝑋  /  𝑌 ) )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) )  =  ( Σ 𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ·  ( ( 𝑋  /  𝑌 ) ↑ 𝑎 ) )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ) | 
						
							| 13 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... ( deg ‘ 𝐹 ) )  ∈  Fin ) | 
						
							| 14 |  | dgrcl | ⊢ ( 𝐹  ∈  ( Poly ‘ ℤ )  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 15 | 1 14 | syl | ⊢ ( 𝜑  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 16 | 5 15 | expcld | ⊢ ( 𝜑  →  ( 𝑌 ↑ ( deg ‘ 𝐹 ) )  ∈  ℂ ) | 
						
							| 17 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 18 | 8 | coef2 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℤ )  ∧  0  ∈  ℤ )  →  ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℤ ) | 
						
							| 19 | 1 17 18 | sylancl | ⊢ ( 𝜑  →  ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℤ ) | 
						
							| 20 |  | elfznn0 | ⊢ ( 𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) )  →  𝑎  ∈  ℕ0 ) | 
						
							| 21 |  | ffvelcdm | ⊢ ( ( ( coeff ‘ 𝐹 ) : ℕ0 ⟶ ℤ  ∧  𝑎  ∈  ℕ0 )  →  ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ∈  ℤ ) | 
						
							| 22 | 19 20 21 | syl2an | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ∈  ℤ ) | 
						
							| 23 | 22 | zcnd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ∈  ℂ ) | 
						
							| 24 |  | expcl | ⊢ ( ( ( 𝑋  /  𝑌 )  ∈  ℂ  ∧  𝑎  ∈  ℕ0 )  →  ( ( 𝑋  /  𝑌 ) ↑ 𝑎 )  ∈  ℂ ) | 
						
							| 25 | 7 20 24 | syl2an | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝑋  /  𝑌 ) ↑ 𝑎 )  ∈  ℂ ) | 
						
							| 26 | 23 25 | mulcld | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ·  ( ( 𝑋  /  𝑌 ) ↑ 𝑎 ) )  ∈  ℂ ) | 
						
							| 27 | 13 16 26 | fsummulc1 | ⊢ ( 𝜑  →  ( Σ 𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ·  ( ( 𝑋  /  𝑌 ) ↑ 𝑎 ) )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) )  =  Σ 𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ·  ( ( 𝑋  /  𝑌 ) ↑ 𝑎 ) )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ) | 
						
							| 28 | 12 27 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ ( 𝑋  /  𝑌 ) )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) )  =  Σ 𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ·  ( ( 𝑋  /  𝑌 ) ↑ 𝑎 ) )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ) | 
						
							| 29 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  𝑌  ∈  ℂ ) | 
						
							| 30 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 31 | 29 30 | expcld | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑌 ↑ ( deg ‘ 𝐹 ) )  ∈  ℂ ) | 
						
							| 32 | 23 25 31 | mulassd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ·  ( ( 𝑋  /  𝑌 ) ↑ 𝑎 ) )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) )  =  ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ·  ( ( ( 𝑋  /  𝑌 ) ↑ 𝑎 )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ) ) | 
						
							| 33 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  𝑋  ∈  ℤ ) | 
						
							| 34 | 33 | zcnd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  𝑋  ∈  ℂ ) | 
						
							| 35 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  𝑌  ≠  0 ) | 
						
							| 36 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  𝑎  ∈  ℕ0 ) | 
						
							| 37 | 34 29 35 36 | expdivd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝑋  /  𝑌 ) ↑ 𝑎 )  =  ( ( 𝑋 ↑ 𝑎 )  /  ( 𝑌 ↑ 𝑎 ) ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( ( 𝑋  /  𝑌 ) ↑ 𝑎 )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) )  =  ( ( ( 𝑋 ↑ 𝑎 )  /  ( 𝑌 ↑ 𝑎 ) )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) ) | 
						
							| 39 | 34 36 | expcld | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑋 ↑ 𝑎 )  ∈  ℂ ) | 
						
							| 40 |  | nnexpcl | ⊢ ( ( 𝑌  ∈  ℕ  ∧  𝑎  ∈  ℕ0 )  →  ( 𝑌 ↑ 𝑎 )  ∈  ℕ ) | 
						
							| 41 | 3 20 40 | syl2an | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑌 ↑ 𝑎 )  ∈  ℕ ) | 
						
							| 42 | 41 | nncnd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑌 ↑ 𝑎 )  ∈  ℂ ) | 
						
							| 43 | 41 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑌 ↑ 𝑎 )  ≠  0 ) | 
						
							| 44 | 39 42 31 43 | div13d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( ( 𝑋 ↑ 𝑎 )  /  ( 𝑌 ↑ 𝑎 ) )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) )  =  ( ( ( 𝑌 ↑ ( deg ‘ 𝐹 ) )  /  ( 𝑌 ↑ 𝑎 ) )  ·  ( 𝑋 ↑ 𝑎 ) ) ) | 
						
							| 45 | 38 44 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( ( 𝑋  /  𝑌 ) ↑ 𝑎 )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) )  =  ( ( ( 𝑌 ↑ ( deg ‘ 𝐹 ) )  /  ( 𝑌 ↑ 𝑎 ) )  ·  ( 𝑋 ↑ 𝑎 ) ) ) | 
						
							| 46 |  | elfzelz | ⊢ ( 𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) )  →  𝑎  ∈  ℤ ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  𝑎  ∈  ℤ ) | 
						
							| 48 | 30 | nn0zd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( deg ‘ 𝐹 )  ∈  ℤ ) | 
						
							| 49 | 29 35 47 48 | expsubd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑌 ↑ ( ( deg ‘ 𝐹 )  −  𝑎 ) )  =  ( ( 𝑌 ↑ ( deg ‘ 𝐹 ) )  /  ( 𝑌 ↑ 𝑎 ) ) ) | 
						
							| 50 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  𝑌  ∈  ℕ ) | 
						
							| 51 | 50 | nnzd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  𝑌  ∈  ℤ ) | 
						
							| 52 |  | fznn0sub | ⊢ ( 𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) )  →  ( ( deg ‘ 𝐹 )  −  𝑎 )  ∈  ℕ0 ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( deg ‘ 𝐹 )  −  𝑎 )  ∈  ℕ0 ) | 
						
							| 54 |  | zexpcl | ⊢ ( ( 𝑌  ∈  ℤ  ∧  ( ( deg ‘ 𝐹 )  −  𝑎 )  ∈  ℕ0 )  →  ( 𝑌 ↑ ( ( deg ‘ 𝐹 )  −  𝑎 ) )  ∈  ℤ ) | 
						
							| 55 | 51 53 54 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑌 ↑ ( ( deg ‘ 𝐹 )  −  𝑎 ) )  ∈  ℤ ) | 
						
							| 56 | 49 55 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( 𝑌 ↑ ( deg ‘ 𝐹 ) )  /  ( 𝑌 ↑ 𝑎 ) )  ∈  ℤ ) | 
						
							| 57 |  | zexpcl | ⊢ ( ( 𝑋  ∈  ℤ  ∧  𝑎  ∈  ℕ0 )  →  ( 𝑋 ↑ 𝑎 )  ∈  ℤ ) | 
						
							| 58 | 2 20 57 | syl2an | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( 𝑋 ↑ 𝑎 )  ∈  ℤ ) | 
						
							| 59 | 56 58 | zmulcld | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( ( 𝑌 ↑ ( deg ‘ 𝐹 ) )  /  ( 𝑌 ↑ 𝑎 ) )  ·  ( 𝑋 ↑ 𝑎 ) )  ∈  ℤ ) | 
						
							| 60 | 45 59 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( ( 𝑋  /  𝑌 ) ↑ 𝑎 )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) )  ∈  ℤ ) | 
						
							| 61 | 22 60 | zmulcld | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ·  ( ( ( 𝑋  /  𝑌 ) ↑ 𝑎 )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) ) )  ∈  ℤ ) | 
						
							| 62 | 32 61 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) )  →  ( ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ·  ( ( 𝑋  /  𝑌 ) ↑ 𝑎 ) )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) )  ∈  ℤ ) | 
						
							| 63 | 13 62 | fsumzcl | ⊢ ( 𝜑  →  Σ 𝑎  ∈  ( 0 ... ( deg ‘ 𝐹 ) ) ( ( ( ( coeff ‘ 𝐹 ) ‘ 𝑎 )  ·  ( ( 𝑋  /  𝑌 ) ↑ 𝑎 ) )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) )  ∈  ℤ ) | 
						
							| 64 | 28 63 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ ( 𝑋  /  𝑌 ) )  ·  ( 𝑌 ↑ ( deg ‘ 𝐹 ) ) )  ∈  ℤ ) |