| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abelth.1 |
|- ( ph -> A : NN0 --> CC ) |
| 2 |
|
abelth.2 |
|- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
| 3 |
|
abelth.3 |
|- ( ph -> M e. RR ) |
| 4 |
|
abelth.4 |
|- ( ph -> 0 <_ M ) |
| 5 |
|
abelth.5 |
|- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
| 6 |
|
abelth.6 |
|- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
| 7 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 8 |
|
0zd |
|- ( ( ph /\ x e. S ) -> 0 e. ZZ ) |
| 9 |
|
fveq2 |
|- ( m = n -> ( A ` m ) = ( A ` n ) ) |
| 10 |
|
oveq2 |
|- ( m = n -> ( x ^ m ) = ( x ^ n ) ) |
| 11 |
9 10
|
oveq12d |
|- ( m = n -> ( ( A ` m ) x. ( x ^ m ) ) = ( ( A ` n ) x. ( x ^ n ) ) ) |
| 12 |
|
eqid |
|- ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) = ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) |
| 13 |
|
ovex |
|- ( ( A ` n ) x. ( x ^ n ) ) e. _V |
| 14 |
11 12 13
|
fvmpt |
|- ( n e. NN0 -> ( ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) ` n ) = ( ( A ` n ) x. ( x ^ n ) ) ) |
| 15 |
14
|
adantl |
|- ( ( ( ph /\ x e. S ) /\ n e. NN0 ) -> ( ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) ` n ) = ( ( A ` n ) x. ( x ^ n ) ) ) |
| 16 |
1
|
adantr |
|- ( ( ph /\ x e. S ) -> A : NN0 --> CC ) |
| 17 |
16
|
ffvelcdmda |
|- ( ( ( ph /\ x e. S ) /\ n e. NN0 ) -> ( A ` n ) e. CC ) |
| 18 |
5
|
ssrab3 |
|- S C_ CC |
| 19 |
18
|
a1i |
|- ( ph -> S C_ CC ) |
| 20 |
19
|
sselda |
|- ( ( ph /\ x e. S ) -> x e. CC ) |
| 21 |
|
expcl |
|- ( ( x e. CC /\ n e. NN0 ) -> ( x ^ n ) e. CC ) |
| 22 |
20 21
|
sylan |
|- ( ( ( ph /\ x e. S ) /\ n e. NN0 ) -> ( x ^ n ) e. CC ) |
| 23 |
17 22
|
mulcld |
|- ( ( ( ph /\ x e. S ) /\ n e. NN0 ) -> ( ( A ` n ) x. ( x ^ n ) ) e. CC ) |
| 24 |
1 2 3 4 5
|
abelthlem3 |
|- ( ( ph /\ x e. S ) -> seq 0 ( + , ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) ) e. dom ~~> ) |
| 25 |
7 8 15 23 24
|
isumcl |
|- ( ( ph /\ x e. S ) -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) e. CC ) |
| 26 |
25 6
|
fmptd |
|- ( ph -> F : S --> CC ) |