Metamath Proof Explorer


Theorem abelthlem4

Description: Lemma for abelth . (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Hypotheses abelth.1 φA:0
abelth.2 φseq0+Adom
abelth.3 φM
abelth.4 φ0M
abelth.5 S=z|1zM1z
abelth.6 F=xSn0Anxn
Assertion abelthlem4 φF:S

Proof

Step Hyp Ref Expression
1 abelth.1 φA:0
2 abelth.2 φseq0+Adom
3 abelth.3 φM
4 abelth.4 φ0M
5 abelth.5 S=z|1zM1z
6 abelth.6 F=xSn0Anxn
7 nn0uz 0=0
8 0zd φxS0
9 fveq2 m=nAm=An
10 oveq2 m=nxm=xn
11 9 10 oveq12d m=nAmxm=Anxn
12 eqid m0Amxm=m0Amxm
13 ovex AnxnV
14 11 12 13 fvmpt n0m0Amxmn=Anxn
15 14 adantl φxSn0m0Amxmn=Anxn
16 1 adantr φxSA:0
17 16 ffvelcdmda φxSn0An
18 5 ssrab3 S
19 18 a1i φS
20 19 sselda φxSx
21 expcl xn0xn
22 20 21 sylan φxSn0xn
23 17 22 mulcld φxSn0Anxn
24 1 2 3 4 5 abelthlem3 φxSseq0+m0Amxmdom
25 7 8 15 23 24 isumcl φxSn0Anxn
26 25 6 fmptd φF:S