Metamath Proof Explorer


Theorem abelthlem3

Description: Lemma for abelth . (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Hypotheses abelth.1 φA:0
abelth.2 φseq0+Adom
abelth.3 φM
abelth.4 φ0M
abelth.5 S=z|1zM1z
Assertion abelthlem3 φXSseq0+n0AnXndom

Proof

Step Hyp Ref Expression
1 abelth.1 φA:0
2 abelth.2 φseq0+Adom
3 abelth.3 φM
4 abelth.4 φ0M
5 abelth.5 S=z|1zM1z
6 1 2 3 4 5 abelthlem2 φ1SS10ballabs1
7 6 simprd φS10ballabs1
8 ssundif S10ballabs1S10ballabs1
9 7 8 sylibr φS10ballabs1
10 9 sselda φXSX10ballabs1
11 elun X10ballabs1X1X0ballabs1
12 10 11 sylib φXSX1X0ballabs1
13 1 feqmptd φA=n0An
14 1 ffvelcdmda φn0An
15 14 mulridd φn0An1=An
16 15 mpteq2dva φn0An1=n0An
17 13 16 eqtr4d φA=n0An1
18 elsni X1X=1
19 18 oveq1d X1Xn=1n
20 nn0z n0n
21 1exp n1n=1
22 20 21 syl n01n=1
23 19 22 sylan9eq X1n0Xn=1
24 23 oveq2d X1n0AnXn=An1
25 24 mpteq2dva X1n0AnXn=n0An1
26 25 eqcomd X1n0An1=n0AnXn
27 17 26 sylan9eq φX1A=n0AnXn
28 27 seqeq3d φX1seq0+A=seq0+n0AnXn
29 2 adantr φX1seq0+Adom
30 28 29 eqeltrrd φX1seq0+n0AnXndom
31 cnxmet abs∞Met
32 0cn 0
33 1xr 1*
34 blssm abs∞Met01*0ballabs1
35 31 32 33 34 mp3an 0ballabs1
36 simpr φX0ballabs1X0ballabs1
37 35 36 sselid φX0ballabs1X
38 oveq1 z=Xzn=Xn
39 38 oveq2d z=XAnzn=AnXn
40 39 mpteq2dv z=Xn0Anzn=n0AnXn
41 eqid zn0Anzn=zn0Anzn
42 nn0ex 0V
43 42 mptex n0AnXnV
44 40 41 43 fvmpt Xzn0AnznX=n0AnXn
45 37 44 syl φX0ballabs1zn0AnznX=n0AnXn
46 45 seqeq3d φX0ballabs1seq0+zn0AnznX=seq0+n0AnXn
47 1 adantr φX0ballabs1A:0
48 eqid supr|seq0+zn0Anznrdom*<=supr|seq0+zn0Anznrdom*<
49 37 abscld φX0ballabs1X
50 49 rexrd φX0ballabs1X*
51 1re 1
52 rexr 11*
53 51 52 mp1i φX0ballabs11*
54 iccssxr 0+∞*
55 41 47 48 radcnvcl φX0ballabs1supr|seq0+zn0Anznrdom*<0+∞
56 54 55 sselid φX0ballabs1supr|seq0+zn0Anznrdom*<*
57 eqid abs=abs
58 57 cnmetdval X0Xabs0=X0
59 37 32 58 sylancl φX0ballabs1Xabs0=X0
60 37 subid1d φX0ballabs1X0=X
61 60 fveq2d φX0ballabs1X0=X
62 59 61 eqtrd φX0ballabs1Xabs0=X
63 elbl3 abs∞Met1*0XX0ballabs1Xabs0<1
64 31 33 63 mpanl12 0XX0ballabs1Xabs0<1
65 32 37 64 sylancr φX0ballabs1X0ballabs1Xabs0<1
66 36 65 mpbid φX0ballabs1Xabs0<1
67 62 66 eqbrtrrd φX0ballabs1X<1
68 1 2 abelthlem1 φ1supr|seq0+zn0Anznrdom*<
69 68 adantr φX0ballabs11supr|seq0+zn0Anznrdom*<
70 50 53 56 67 69 xrltletrd φX0ballabs1X<supr|seq0+zn0Anznrdom*<
71 41 47 48 37 70 radcnvlt2 φX0ballabs1seq0+zn0AnznXdom
72 46 71 eqeltrrd φX0ballabs1seq0+n0AnXndom
73 30 72 jaodan φX1X0ballabs1seq0+n0AnXndom
74 12 73 syldan φXSseq0+n0AnXndom