Step |
Hyp |
Ref |
Expression |
1 |
|
abelth.1 |
|
2 |
|
abelth.2 |
|
3 |
|
abelth.3 |
|
4 |
|
abelth.4 |
|
5 |
|
abelth.5 |
|
6 |
1 2 3 4 5
|
abelthlem2 |
|
7 |
6
|
simprd |
|
8 |
|
ssundif |
|
9 |
7 8
|
sylibr |
|
10 |
9
|
sselda |
|
11 |
|
elun |
|
12 |
10 11
|
sylib |
|
13 |
1
|
feqmptd |
|
14 |
1
|
ffvelrnda |
|
15 |
14
|
mulid1d |
|
16 |
15
|
mpteq2dva |
|
17 |
13 16
|
eqtr4d |
|
18 |
|
elsni |
|
19 |
18
|
oveq1d |
|
20 |
|
nn0z |
|
21 |
|
1exp |
|
22 |
20 21
|
syl |
|
23 |
19 22
|
sylan9eq |
|
24 |
23
|
oveq2d |
|
25 |
24
|
mpteq2dva |
|
26 |
25
|
eqcomd |
|
27 |
17 26
|
sylan9eq |
|
28 |
27
|
seqeq3d |
|
29 |
2
|
adantr |
|
30 |
28 29
|
eqeltrrd |
|
31 |
|
cnxmet |
|
32 |
|
0cn |
|
33 |
|
1xr |
|
34 |
|
blssm |
|
35 |
31 32 33 34
|
mp3an |
|
36 |
|
simpr |
|
37 |
35 36
|
sselid |
|
38 |
|
oveq1 |
|
39 |
38
|
oveq2d |
|
40 |
39
|
mpteq2dv |
|
41 |
|
eqid |
|
42 |
|
nn0ex |
|
43 |
42
|
mptex |
|
44 |
40 41 43
|
fvmpt |
|
45 |
37 44
|
syl |
|
46 |
45
|
seqeq3d |
|
47 |
1
|
adantr |
|
48 |
|
eqid |
|
49 |
37
|
abscld |
|
50 |
49
|
rexrd |
|
51 |
|
1re |
|
52 |
|
rexr |
|
53 |
51 52
|
mp1i |
|
54 |
|
iccssxr |
|
55 |
41 47 48
|
radcnvcl |
|
56 |
54 55
|
sselid |
|
57 |
|
eqid |
|
58 |
57
|
cnmetdval |
|
59 |
37 32 58
|
sylancl |
|
60 |
37
|
subid1d |
|
61 |
60
|
fveq2d |
|
62 |
59 61
|
eqtrd |
|
63 |
|
elbl3 |
|
64 |
31 33 63
|
mpanl12 |
|
65 |
32 37 64
|
sylancr |
|
66 |
36 65
|
mpbid |
|
67 |
62 66
|
eqbrtrrd |
|
68 |
1 2
|
abelthlem1 |
|
69 |
68
|
adantr |
|
70 |
50 53 56 67 69
|
xrltletrd |
|
71 |
41 47 48 37 70
|
radcnvlt2 |
|
72 |
46 71
|
eqeltrrd |
|
73 |
30 72
|
jaodan |
|
74 |
12 73
|
syldan |
|