Database
BASIC REAL AND COMPLEX FUNCTIONS
Sequences and series
Power series
abelthlem3
Next ⟩
abelthlem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
abelthlem3
Description:
Lemma for
abelth
.
(Contributed by
Mario Carneiro
, 31-Mar-2015)
Ref
Expression
Hypotheses
abelth.1
⊢
φ
→
A
:
ℕ
0
⟶
ℂ
abelth.2
⊢
φ
→
seq
0
+
A
∈
dom
⇝
abelth.3
⊢
φ
→
M
∈
ℝ
abelth.4
⊢
φ
→
0
≤
M
abelth.5
⊢
S
=
z
∈
ℂ
|
1
−
z
≤
M
1
−
z
Assertion
abelthlem3
⊢
φ
∧
X
∈
S
→
seq
0
+
n
∈
ℕ
0
⟼
A
n
X
n
∈
dom
⇝
Proof
Step
Hyp
Ref
Expression
1
abelth.1
⊢
φ
→
A
:
ℕ
0
⟶
ℂ
2
abelth.2
⊢
φ
→
seq
0
+
A
∈
dom
⇝
3
abelth.3
⊢
φ
→
M
∈
ℝ
4
abelth.4
⊢
φ
→
0
≤
M
5
abelth.5
⊢
S
=
z
∈
ℂ
|
1
−
z
≤
M
1
−
z
6
1
2
3
4
5
abelthlem2
⊢
φ
→
1
∈
S
∧
S
∖
1
⊆
0
ball
abs
∘
−
1
7
6
simprd
⊢
φ
→
S
∖
1
⊆
0
ball
abs
∘
−
1
8
ssundif
⊢
S
⊆
1
∪
0
ball
abs
∘
−
1
↔
S
∖
1
⊆
0
ball
abs
∘
−
1
9
7
8
sylibr
⊢
φ
→
S
⊆
1
∪
0
ball
abs
∘
−
1
10
9
sselda
⊢
φ
∧
X
∈
S
→
X
∈
1
∪
0
ball
abs
∘
−
1
11
elun
⊢
X
∈
1
∪
0
ball
abs
∘
−
1
↔
X
∈
1
∨
X
∈
0
ball
abs
∘
−
1
12
10
11
sylib
⊢
φ
∧
X
∈
S
→
X
∈
1
∨
X
∈
0
ball
abs
∘
−
1
13
1
feqmptd
⊢
φ
→
A
=
n
∈
ℕ
0
⟼
A
n
14
1
ffvelcdmda
⊢
φ
∧
n
∈
ℕ
0
→
A
n
∈
ℂ
15
14
mulridd
⊢
φ
∧
n
∈
ℕ
0
→
A
n
⋅
1
=
A
n
16
15
mpteq2dva
⊢
φ
→
n
∈
ℕ
0
⟼
A
n
⋅
1
=
n
∈
ℕ
0
⟼
A
n
17
13
16
eqtr4d
⊢
φ
→
A
=
n
∈
ℕ
0
⟼
A
n
⋅
1
18
elsni
⊢
X
∈
1
→
X
=
1
19
18
oveq1d
⊢
X
∈
1
→
X
n
=
1
n
20
nn0z
⊢
n
∈
ℕ
0
→
n
∈
ℤ
21
1exp
⊢
n
∈
ℤ
→
1
n
=
1
22
20
21
syl
⊢
n
∈
ℕ
0
→
1
n
=
1
23
19
22
sylan9eq
⊢
X
∈
1
∧
n
∈
ℕ
0
→
X
n
=
1
24
23
oveq2d
⊢
X
∈
1
∧
n
∈
ℕ
0
→
A
n
X
n
=
A
n
⋅
1
25
24
mpteq2dva
⊢
X
∈
1
→
n
∈
ℕ
0
⟼
A
n
X
n
=
n
∈
ℕ
0
⟼
A
n
⋅
1
26
25
eqcomd
⊢
X
∈
1
→
n
∈
ℕ
0
⟼
A
n
⋅
1
=
n
∈
ℕ
0
⟼
A
n
X
n
27
17
26
sylan9eq
⊢
φ
∧
X
∈
1
→
A
=
n
∈
ℕ
0
⟼
A
n
X
n
28
27
seqeq3d
⊢
φ
∧
X
∈
1
→
seq
0
+
A
=
seq
0
+
n
∈
ℕ
0
⟼
A
n
X
n
29
2
adantr
⊢
φ
∧
X
∈
1
→
seq
0
+
A
∈
dom
⇝
30
28
29
eqeltrrd
⊢
φ
∧
X
∈
1
→
seq
0
+
n
∈
ℕ
0
⟼
A
n
X
n
∈
dom
⇝
31
cnxmet
⊢
abs
∘
−
∈
∞Met
ℂ
32
0cn
⊢
0
∈
ℂ
33
1xr
⊢
1
∈
ℝ
*
34
blssm
⊢
abs
∘
−
∈
∞Met
ℂ
∧
0
∈
ℂ
∧
1
∈
ℝ
*
→
0
ball
abs
∘
−
1
⊆
ℂ
35
31
32
33
34
mp3an
⊢
0
ball
abs
∘
−
1
⊆
ℂ
36
simpr
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
X
∈
0
ball
abs
∘
−
1
37
35
36
sselid
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
X
∈
ℂ
38
oveq1
⊢
z
=
X
→
z
n
=
X
n
39
38
oveq2d
⊢
z
=
X
→
A
n
z
n
=
A
n
X
n
40
39
mpteq2dv
⊢
z
=
X
→
n
∈
ℕ
0
⟼
A
n
z
n
=
n
∈
ℕ
0
⟼
A
n
X
n
41
eqid
⊢
z
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
z
n
=
z
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
z
n
42
nn0ex
⊢
ℕ
0
∈
V
43
42
mptex
⊢
n
∈
ℕ
0
⟼
A
n
X
n
∈
V
44
40
41
43
fvmpt
⊢
X
∈
ℂ
→
z
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
z
n
X
=
n
∈
ℕ
0
⟼
A
n
X
n
45
37
44
syl
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
z
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
z
n
X
=
n
∈
ℕ
0
⟼
A
n
X
n
46
45
seqeq3d
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
seq
0
+
z
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
z
n
X
=
seq
0
+
n
∈
ℕ
0
⟼
A
n
X
n
47
1
adantr
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
A
:
ℕ
0
⟶
ℂ
48
eqid
⊢
sup
r
∈
ℝ
|
seq
0
+
z
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
z
n
r
∈
dom
⇝
ℝ
*
<
=
sup
r
∈
ℝ
|
seq
0
+
z
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
z
n
r
∈
dom
⇝
ℝ
*
<
49
37
abscld
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
X
∈
ℝ
50
49
rexrd
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
X
∈
ℝ
*
51
1re
⊢
1
∈
ℝ
52
rexr
⊢
1
∈
ℝ
→
1
∈
ℝ
*
53
51
52
mp1i
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
1
∈
ℝ
*
54
iccssxr
⊢
0
+∞
⊆
ℝ
*
55
41
47
48
radcnvcl
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
sup
r
∈
ℝ
|
seq
0
+
z
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
z
n
r
∈
dom
⇝
ℝ
*
<
∈
0
+∞
56
54
55
sselid
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
sup
r
∈
ℝ
|
seq
0
+
z
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
z
n
r
∈
dom
⇝
ℝ
*
<
∈
ℝ
*
57
eqid
⊢
abs
∘
−
=
abs
∘
−
58
57
cnmetdval
⊢
X
∈
ℂ
∧
0
∈
ℂ
→
X
abs
∘
−
0
=
X
−
0
59
37
32
58
sylancl
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
X
abs
∘
−
0
=
X
−
0
60
37
subid1d
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
X
−
0
=
X
61
60
fveq2d
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
X
−
0
=
X
62
59
61
eqtrd
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
X
abs
∘
−
0
=
X
63
elbl3
⊢
abs
∘
−
∈
∞Met
ℂ
∧
1
∈
ℝ
*
∧
0
∈
ℂ
∧
X
∈
ℂ
→
X
∈
0
ball
abs
∘
−
1
↔
X
abs
∘
−
0
<
1
64
31
33
63
mpanl12
⊢
0
∈
ℂ
∧
X
∈
ℂ
→
X
∈
0
ball
abs
∘
−
1
↔
X
abs
∘
−
0
<
1
65
32
37
64
sylancr
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
X
∈
0
ball
abs
∘
−
1
↔
X
abs
∘
−
0
<
1
66
36
65
mpbid
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
X
abs
∘
−
0
<
1
67
62
66
eqbrtrrd
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
X
<
1
68
1
2
abelthlem1
⊢
φ
→
1
≤
sup
r
∈
ℝ
|
seq
0
+
z
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
z
n
r
∈
dom
⇝
ℝ
*
<
69
68
adantr
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
1
≤
sup
r
∈
ℝ
|
seq
0
+
z
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
z
n
r
∈
dom
⇝
ℝ
*
<
70
50
53
56
67
69
xrltletrd
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
X
<
sup
r
∈
ℝ
|
seq
0
+
z
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
z
n
r
∈
dom
⇝
ℝ
*
<
71
41
47
48
37
70
radcnvlt2
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
seq
0
+
z
∈
ℂ
⟼
n
∈
ℕ
0
⟼
A
n
z
n
X
∈
dom
⇝
72
46
71
eqeltrrd
⊢
φ
∧
X
∈
0
ball
abs
∘
−
1
→
seq
0
+
n
∈
ℕ
0
⟼
A
n
X
n
∈
dom
⇝
73
30
72
jaodan
⊢
φ
∧
X
∈
1
∨
X
∈
0
ball
abs
∘
−
1
→
seq
0
+
n
∈
ℕ
0
⟼
A
n
X
n
∈
dom
⇝
74
12
73
syldan
⊢
φ
∧
X
∈
S
→
seq
0
+
n
∈
ℕ
0
⟼
A
n
X
n
∈
dom
⇝