| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abelth.1 |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 2 |
|
abelth.2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
| 3 |
|
abelth.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 4 |
|
abelth.4 |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
| 5 |
|
abelth.5 |
⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } |
| 6 |
1 2 3 4 5
|
abelthlem2 |
⊢ ( 𝜑 → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 7 |
6
|
simprd |
⊢ ( 𝜑 → ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 8 |
|
ssundif |
⊢ ( 𝑆 ⊆ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ↔ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 9 |
7 8
|
sylibr |
⊢ ( 𝜑 → 𝑆 ⊆ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 10 |
9
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 11 |
|
elun |
⊢ ( 𝑋 ∈ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ↔ ( 𝑋 ∈ { 1 } ∨ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 12 |
10 11
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∈ { 1 } ∨ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 13 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ‘ 𝑛 ) ) ) |
| 14 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 15 |
14
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · 1 ) = ( 𝐴 ‘ 𝑛 ) ) |
| 16 |
15
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ‘ 𝑛 ) ) ) |
| 17 |
13 16
|
eqtr4d |
⊢ ( 𝜑 → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) ) |
| 18 |
|
elsni |
⊢ ( 𝑋 ∈ { 1 } → 𝑋 = 1 ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑋 ∈ { 1 } → ( 𝑋 ↑ 𝑛 ) = ( 1 ↑ 𝑛 ) ) |
| 20 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
| 21 |
|
1exp |
⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) |
| 22 |
20 21
|
syl |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 ) |
| 23 |
19 22
|
sylan9eq |
⊢ ( ( 𝑋 ∈ { 1 } ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑛 ) = 1 ) |
| 24 |
23
|
oveq2d |
⊢ ( ( 𝑋 ∈ { 1 } ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 25 |
24
|
mpteq2dva |
⊢ ( 𝑋 ∈ { 1 } → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) ) |
| 26 |
25
|
eqcomd |
⊢ ( 𝑋 ∈ { 1 } → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 27 |
17 26
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ { 1 } ) → 𝐴 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 28 |
27
|
seqeq3d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ { 1 } ) → seq 0 ( + , 𝐴 ) = seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 29 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ { 1 } ) → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
| 30 |
28 29
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ { 1 } ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 31 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 32 |
|
0cn |
⊢ 0 ∈ ℂ |
| 33 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 34 |
|
blssm |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) |
| 35 |
31 32 33 34
|
mp3an |
⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ |
| 36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 37 |
35 36
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 𝑋 ∈ ℂ ) |
| 38 |
|
oveq1 |
⊢ ( 𝑧 = 𝑋 → ( 𝑧 ↑ 𝑛 ) = ( 𝑋 ↑ 𝑛 ) ) |
| 39 |
38
|
oveq2d |
⊢ ( 𝑧 = 𝑋 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 40 |
39
|
mpteq2dv |
⊢ ( 𝑧 = 𝑋 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 41 |
|
eqid |
⊢ ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) |
| 42 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 43 |
42
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ V |
| 44 |
40 41 43
|
fvmpt |
⊢ ( 𝑋 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 45 |
37 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 46 |
45
|
seqeq3d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 ) ) = seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 47 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 48 |
|
eqid |
⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
| 49 |
37
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 50 |
49
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ* ) |
| 51 |
|
1re |
⊢ 1 ∈ ℝ |
| 52 |
|
rexr |
⊢ ( 1 ∈ ℝ → 1 ∈ ℝ* ) |
| 53 |
51 52
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 1 ∈ ℝ* ) |
| 54 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 55 |
41 47 48
|
radcnvcl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ( 0 [,] +∞ ) ) |
| 56 |
54 55
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
| 57 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
| 58 |
57
|
cnmetdval |
⊢ ( ( 𝑋 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
| 59 |
37 32 58
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
| 60 |
37
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 − 0 ) = 𝑋 ) |
| 61 |
60
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ ( 𝑋 − 0 ) ) = ( abs ‘ 𝑋 ) ) |
| 62 |
59 61
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ 𝑋 ) ) |
| 63 |
|
elbl3 |
⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 0 ∈ ℂ ∧ 𝑋 ∈ ℂ ) ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
| 64 |
31 33 63
|
mpanl12 |
⊢ ( ( 0 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
| 65 |
32 37 64
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
| 66 |
36 65
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) |
| 67 |
62 66
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ 𝑋 ) < 1 ) |
| 68 |
1 2
|
abelthlem1 |
⊢ ( 𝜑 → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → 1 ≤ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 70 |
50 53 56 67 69
|
xrltletrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ( abs ‘ 𝑋 ) < sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ) |
| 71 |
41 47 48 37 70
|
radcnvlt2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( ( 𝑧 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑧 ↑ 𝑛 ) ) ) ) ‘ 𝑋 ) ) ∈ dom ⇝ ) |
| 72 |
46 71
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 73 |
30 72
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ { 1 } ∨ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 74 |
12 73
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ dom ⇝ ) |