| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abelth.1 |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 2 |
|
abelth.2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
| 3 |
|
abelth.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 4 |
|
abelth.4 |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
| 5 |
|
abelth.5 |
⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } |
| 6 |
|
1cnd |
⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) → 1 ∈ ℂ ) |
| 7 |
|
0le0 |
⊢ 0 ≤ 0 |
| 8 |
|
simpl |
⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 9 |
8
|
recnd |
⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) → 𝑀 ∈ ℂ ) |
| 10 |
9
|
mul01d |
⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) → ( 𝑀 · 0 ) = 0 ) |
| 11 |
7 10
|
breqtrrid |
⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) → 0 ≤ ( 𝑀 · 0 ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑧 = 1 → ( 1 − 𝑧 ) = ( 1 − 1 ) ) |
| 13 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 14 |
12 13
|
eqtrdi |
⊢ ( 𝑧 = 1 → ( 1 − 𝑧 ) = 0 ) |
| 15 |
14
|
abs00bd |
⊢ ( 𝑧 = 1 → ( abs ‘ ( 1 − 𝑧 ) ) = 0 ) |
| 16 |
|
fveq2 |
⊢ ( 𝑧 = 1 → ( abs ‘ 𝑧 ) = ( abs ‘ 1 ) ) |
| 17 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
| 18 |
16 17
|
eqtrdi |
⊢ ( 𝑧 = 1 → ( abs ‘ 𝑧 ) = 1 ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝑧 = 1 → ( 1 − ( abs ‘ 𝑧 ) ) = ( 1 − 1 ) ) |
| 20 |
19 13
|
eqtrdi |
⊢ ( 𝑧 = 1 → ( 1 − ( abs ‘ 𝑧 ) ) = 0 ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑧 = 1 → ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) = ( 𝑀 · 0 ) ) |
| 22 |
15 21
|
breq12d |
⊢ ( 𝑧 = 1 → ( ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ↔ 0 ≤ ( 𝑀 · 0 ) ) ) |
| 23 |
22 5
|
elrab2 |
⊢ ( 1 ∈ 𝑆 ↔ ( 1 ∈ ℂ ∧ 0 ≤ ( 𝑀 · 0 ) ) ) |
| 24 |
6 11 23
|
sylanbrc |
⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) → 1 ∈ 𝑆 ) |
| 25 |
|
velsn |
⊢ ( 𝑧 ∈ { 1 } ↔ 𝑧 = 1 ) |
| 26 |
25
|
necon3bbii |
⊢ ( ¬ 𝑧 ∈ { 1 } ↔ 𝑧 ≠ 1 ) |
| 27 |
|
simprll |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → 𝑧 ∈ ℂ ) |
| 28 |
|
0cn |
⊢ 0 ∈ ℂ |
| 29 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
| 30 |
29
|
cnmetdval |
⊢ ( ( 𝑧 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑧 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑧 − 0 ) ) ) |
| 31 |
27 28 30
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑧 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑧 − 0 ) ) ) |
| 32 |
27
|
subid1d |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑧 − 0 ) = 𝑧 ) |
| 33 |
32
|
fveq2d |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( abs ‘ ( 𝑧 − 0 ) ) = ( abs ‘ 𝑧 ) ) |
| 34 |
31 33
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑧 ( abs ∘ − ) 0 ) = ( abs ‘ 𝑧 ) ) |
| 35 |
27
|
abscld |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( abs ‘ 𝑧 ) ∈ ℝ ) |
| 36 |
|
1red |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → 1 ∈ ℝ ) |
| 37 |
|
1re |
⊢ 1 ∈ ℝ |
| 38 |
|
resubcl |
⊢ ( ( ( abs ‘ 𝑧 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝑧 ) − 1 ) ∈ ℝ ) |
| 39 |
35 37 38
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( abs ‘ 𝑧 ) − 1 ) ∈ ℝ ) |
| 40 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 41 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 1 − 𝑧 ) ∈ ℂ ) |
| 42 |
40 27 41
|
sylancr |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 1 − 𝑧 ) ∈ ℂ ) |
| 43 |
42
|
abscld |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( abs ‘ ( 1 − 𝑧 ) ) ∈ ℝ ) |
| 44 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → 𝑀 ∈ ℝ ) |
| 45 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ ( abs ‘ 𝑧 ) ∈ ℝ ) → ( 1 − ( abs ‘ 𝑧 ) ) ∈ ℝ ) |
| 46 |
37 35 45
|
sylancr |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 1 − ( abs ‘ 𝑧 ) ) ∈ ℝ ) |
| 47 |
44 46
|
remulcld |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ∈ ℝ ) |
| 48 |
17
|
oveq2i |
⊢ ( ( abs ‘ 𝑧 ) − ( abs ‘ 1 ) ) = ( ( abs ‘ 𝑧 ) − 1 ) |
| 49 |
|
abs2dif |
⊢ ( ( 𝑧 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( abs ‘ 𝑧 ) − ( abs ‘ 1 ) ) ≤ ( abs ‘ ( 𝑧 − 1 ) ) ) |
| 50 |
27 40 49
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( abs ‘ 𝑧 ) − ( abs ‘ 1 ) ) ≤ ( abs ‘ ( 𝑧 − 1 ) ) ) |
| 51 |
48 50
|
eqbrtrrid |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( abs ‘ 𝑧 ) − 1 ) ≤ ( abs ‘ ( 𝑧 − 1 ) ) ) |
| 52 |
|
abssub |
⊢ ( ( 𝑧 ∈ ℂ ∧ 1 ∈ ℂ ) → ( abs ‘ ( 𝑧 − 1 ) ) = ( abs ‘ ( 1 − 𝑧 ) ) ) |
| 53 |
27 40 52
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( abs ‘ ( 𝑧 − 1 ) ) = ( abs ‘ ( 1 − 𝑧 ) ) ) |
| 54 |
51 53
|
breqtrd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( abs ‘ 𝑧 ) − 1 ) ≤ ( abs ‘ ( 1 − 𝑧 ) ) ) |
| 55 |
|
simprlr |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) |
| 56 |
39 43 47 54 55
|
letrd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( abs ‘ 𝑧 ) − 1 ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) |
| 57 |
35 36 47
|
lesubaddd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( ( abs ‘ 𝑧 ) − 1 ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ↔ ( abs ‘ 𝑧 ) ≤ ( ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) + 1 ) ) ) |
| 58 |
56 57
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( abs ‘ 𝑧 ) ≤ ( ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) + 1 ) ) |
| 59 |
9
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → 𝑀 ∈ ℂ ) |
| 60 |
|
1cnd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → 1 ∈ ℂ ) |
| 61 |
44 35
|
remulcld |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑀 · ( abs ‘ 𝑧 ) ) ∈ ℝ ) |
| 62 |
61
|
recnd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑀 · ( abs ‘ 𝑧 ) ) ∈ ℂ ) |
| 63 |
59 60 62
|
addsubd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( 𝑀 + 1 ) − ( 𝑀 · ( abs ‘ 𝑧 ) ) ) = ( ( 𝑀 − ( 𝑀 · ( abs ‘ 𝑧 ) ) ) + 1 ) ) |
| 64 |
35
|
recnd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( abs ‘ 𝑧 ) ∈ ℂ ) |
| 65 |
59 60 64
|
subdid |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) = ( ( 𝑀 · 1 ) − ( 𝑀 · ( abs ‘ 𝑧 ) ) ) ) |
| 66 |
59
|
mulridd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑀 · 1 ) = 𝑀 ) |
| 67 |
66
|
oveq1d |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( 𝑀 · 1 ) − ( 𝑀 · ( abs ‘ 𝑧 ) ) ) = ( 𝑀 − ( 𝑀 · ( abs ‘ 𝑧 ) ) ) ) |
| 68 |
65 67
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) = ( 𝑀 − ( 𝑀 · ( abs ‘ 𝑧 ) ) ) ) |
| 69 |
68
|
oveq1d |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) + 1 ) = ( ( 𝑀 − ( 𝑀 · ( abs ‘ 𝑧 ) ) ) + 1 ) ) |
| 70 |
63 69
|
eqtr4d |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( 𝑀 + 1 ) − ( 𝑀 · ( abs ‘ 𝑧 ) ) ) = ( ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) + 1 ) ) |
| 71 |
58 70
|
breqtrrd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( abs ‘ 𝑧 ) ≤ ( ( 𝑀 + 1 ) − ( 𝑀 · ( abs ‘ 𝑧 ) ) ) ) |
| 72 |
|
peano2re |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 + 1 ) ∈ ℝ ) |
| 73 |
44 72
|
syl |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑀 + 1 ) ∈ ℝ ) |
| 74 |
61 35 73
|
leaddsub2d |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( ( 𝑀 · ( abs ‘ 𝑧 ) ) + ( abs ‘ 𝑧 ) ) ≤ ( 𝑀 + 1 ) ↔ ( abs ‘ 𝑧 ) ≤ ( ( 𝑀 + 1 ) − ( 𝑀 · ( abs ‘ 𝑧 ) ) ) ) ) |
| 75 |
71 74
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( 𝑀 · ( abs ‘ 𝑧 ) ) + ( abs ‘ 𝑧 ) ) ≤ ( 𝑀 + 1 ) ) |
| 76 |
59 64
|
adddirp1d |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( 𝑀 + 1 ) · ( abs ‘ 𝑧 ) ) = ( ( 𝑀 · ( abs ‘ 𝑧 ) ) + ( abs ‘ 𝑧 ) ) ) |
| 77 |
73
|
recnd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑀 + 1 ) ∈ ℂ ) |
| 78 |
77
|
mulridd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( 𝑀 + 1 ) · 1 ) = ( 𝑀 + 1 ) ) |
| 79 |
75 76 78
|
3brtr4d |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( 𝑀 + 1 ) · ( abs ‘ 𝑧 ) ) ≤ ( ( 𝑀 + 1 ) · 1 ) ) |
| 80 |
|
0red |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → 0 ∈ ℝ ) |
| 81 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → 0 ≤ 𝑀 ) |
| 82 |
44
|
ltp1d |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → 𝑀 < ( 𝑀 + 1 ) ) |
| 83 |
80 44 73 81 82
|
lelttrd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → 0 < ( 𝑀 + 1 ) ) |
| 84 |
|
lemul2 |
⊢ ( ( ( abs ‘ 𝑧 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝑀 + 1 ) ∈ ℝ ∧ 0 < ( 𝑀 + 1 ) ) ) → ( ( abs ‘ 𝑧 ) ≤ 1 ↔ ( ( 𝑀 + 1 ) · ( abs ‘ 𝑧 ) ) ≤ ( ( 𝑀 + 1 ) · 1 ) ) ) |
| 85 |
35 36 73 83 84
|
syl112anc |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( abs ‘ 𝑧 ) ≤ 1 ↔ ( ( 𝑀 + 1 ) · ( abs ‘ 𝑧 ) ) ≤ ( ( 𝑀 + 1 ) · 1 ) ) ) |
| 86 |
79 85
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( abs ‘ 𝑧 ) ≤ 1 ) |
| 87 |
43 47 55
|
lensymd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ¬ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) < ( abs ‘ ( 1 − 𝑧 ) ) ) |
| 88 |
10
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑀 · 0 ) = 0 ) |
| 89 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → 𝑧 ≠ 1 ) |
| 90 |
89
|
necomd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → 1 ≠ 𝑧 ) |
| 91 |
|
subeq0 |
⊢ ( ( 1 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 1 − 𝑧 ) = 0 ↔ 1 = 𝑧 ) ) |
| 92 |
91
|
necon3bid |
⊢ ( ( 1 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 1 − 𝑧 ) ≠ 0 ↔ 1 ≠ 𝑧 ) ) |
| 93 |
40 27 92
|
sylancr |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( 1 − 𝑧 ) ≠ 0 ↔ 1 ≠ 𝑧 ) ) |
| 94 |
90 93
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 1 − 𝑧 ) ≠ 0 ) |
| 95 |
|
absgt0 |
⊢ ( ( 1 − 𝑧 ) ∈ ℂ → ( ( 1 − 𝑧 ) ≠ 0 ↔ 0 < ( abs ‘ ( 1 − 𝑧 ) ) ) ) |
| 96 |
42 95
|
syl |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ( 1 − 𝑧 ) ≠ 0 ↔ 0 < ( abs ‘ ( 1 − 𝑧 ) ) ) ) |
| 97 |
94 96
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → 0 < ( abs ‘ ( 1 − 𝑧 ) ) ) |
| 98 |
88 97
|
eqbrtrd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑀 · 0 ) < ( abs ‘ ( 1 − 𝑧 ) ) ) |
| 99 |
|
oveq2 |
⊢ ( 1 = ( abs ‘ 𝑧 ) → ( 1 − 1 ) = ( 1 − ( abs ‘ 𝑧 ) ) ) |
| 100 |
13 99
|
eqtr3id |
⊢ ( 1 = ( abs ‘ 𝑧 ) → 0 = ( 1 − ( abs ‘ 𝑧 ) ) ) |
| 101 |
100
|
oveq2d |
⊢ ( 1 = ( abs ‘ 𝑧 ) → ( 𝑀 · 0 ) = ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) |
| 102 |
101
|
breq1d |
⊢ ( 1 = ( abs ‘ 𝑧 ) → ( ( 𝑀 · 0 ) < ( abs ‘ ( 1 − 𝑧 ) ) ↔ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) < ( abs ‘ ( 1 − 𝑧 ) ) ) ) |
| 103 |
98 102
|
syl5ibcom |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 1 = ( abs ‘ 𝑧 ) → ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) < ( abs ‘ ( 1 − 𝑧 ) ) ) ) |
| 104 |
103
|
necon3bd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( ¬ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) < ( abs ‘ ( 1 − 𝑧 ) ) → 1 ≠ ( abs ‘ 𝑧 ) ) ) |
| 105 |
87 104
|
mpd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → 1 ≠ ( abs ‘ 𝑧 ) ) |
| 106 |
35 36 86 105
|
leneltd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( abs ‘ 𝑧 ) < 1 ) |
| 107 |
34 106
|
eqbrtrd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑧 ( abs ∘ − ) 0 ) < 1 ) |
| 108 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 109 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 110 |
|
elbl3 |
⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 0 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑧 ( abs ∘ − ) 0 ) < 1 ) ) |
| 111 |
108 109 110
|
mpanl12 |
⊢ ( ( 0 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑧 ( abs ∘ − ) 0 ) < 1 ) ) |
| 112 |
28 27 111
|
sylancr |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → ( 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑧 ( abs ∘ − ) 0 ) < 1 ) ) |
| 113 |
107 112
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ∧ 𝑧 ≠ 1 ) ) → 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 114 |
113
|
expr |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ ( 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) ) → ( 𝑧 ≠ 1 → 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 115 |
114
|
3impb |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) → ( 𝑧 ≠ 1 → 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 116 |
26 115
|
biimtrid |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) → ( ¬ 𝑧 ∈ { 1 } → 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 117 |
116
|
orrd |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) → ( 𝑧 ∈ { 1 } ∨ 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 118 |
|
elun |
⊢ ( 𝑧 ∈ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ↔ ( 𝑧 ∈ { 1 } ∨ 𝑧 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 119 |
117 118
|
sylibr |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ∧ 𝑧 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ) → 𝑧 ∈ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 120 |
119
|
rabssdv |
⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) → { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } ⊆ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 121 |
5 120
|
eqsstrid |
⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) → 𝑆 ⊆ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 122 |
|
ssundif |
⊢ ( 𝑆 ⊆ ( { 1 } ∪ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ↔ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 123 |
121 122
|
sylib |
⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) → ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 124 |
24 123
|
jca |
⊢ ( ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 125 |
3 4 124
|
syl2anc |
⊢ ( 𝜑 → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |