Step |
Hyp |
Ref |
Expression |
1 |
|
abelth.1 |
|- ( ph -> A : NN0 --> CC ) |
2 |
|
abelth.2 |
|- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
3 |
|
abelth.3 |
|- ( ph -> M e. RR ) |
4 |
|
abelth.4 |
|- ( ph -> 0 <_ M ) |
5 |
|
abelth.5 |
|- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
6 |
|
abelth.6 |
|- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
7 |
1 2 3 4 5 6
|
abelthlem4 |
|- ( ph -> F : S --> CC ) |
8 |
1 2 3 4 5 6
|
abelthlem9 |
|- ( ( ph /\ r e. RR+ ) -> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < r ) ) |
9 |
1 2 3 4 5
|
abelthlem2 |
|- ( ph -> ( 1 e. S /\ ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
10 |
9
|
simpld |
|- ( ph -> 1 e. S ) |
11 |
10
|
ad2antrr |
|- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> 1 e. S ) |
12 |
|
simpr |
|- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> y e. S ) |
13 |
11 12
|
ovresd |
|- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) = ( 1 ( abs o. - ) y ) ) |
14 |
|
ax-1cn |
|- 1 e. CC |
15 |
5
|
ssrab3 |
|- S C_ CC |
16 |
15 12
|
sselid |
|- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> y e. CC ) |
17 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
18 |
17
|
cnmetdval |
|- ( ( 1 e. CC /\ y e. CC ) -> ( 1 ( abs o. - ) y ) = ( abs ` ( 1 - y ) ) ) |
19 |
14 16 18
|
sylancr |
|- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( 1 ( abs o. - ) y ) = ( abs ` ( 1 - y ) ) ) |
20 |
13 19
|
eqtrd |
|- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) = ( abs ` ( 1 - y ) ) ) |
21 |
20
|
breq1d |
|- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w <-> ( abs ` ( 1 - y ) ) < w ) ) |
22 |
7
|
ad2antrr |
|- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> F : S --> CC ) |
23 |
22 11
|
ffvelrnd |
|- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( F ` 1 ) e. CC ) |
24 |
7
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> F : S --> CC ) |
25 |
24
|
ffvelrnda |
|- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( F ` y ) e. CC ) |
26 |
17
|
cnmetdval |
|- ( ( ( F ` 1 ) e. CC /\ ( F ` y ) e. CC ) -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) = ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) ) |
27 |
23 25 26
|
syl2anc |
|- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) = ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) ) |
28 |
27
|
breq1d |
|- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r <-> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < r ) ) |
29 |
21 28
|
imbi12d |
|- ( ( ( ph /\ r e. RR+ ) /\ y e. S ) -> ( ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r ) <-> ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < r ) ) ) |
30 |
29
|
ralbidva |
|- ( ( ph /\ r e. RR+ ) -> ( A. y e. S ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r ) <-> A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < r ) ) ) |
31 |
30
|
rexbidv |
|- ( ( ph /\ r e. RR+ ) -> ( E. w e. RR+ A. y e. S ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r ) <-> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < r ) ) ) |
32 |
8 31
|
mpbird |
|- ( ( ph /\ r e. RR+ ) -> E. w e. RR+ A. y e. S ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r ) ) |
33 |
32
|
ralrimiva |
|- ( ph -> A. r e. RR+ E. w e. RR+ A. y e. S ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r ) ) |
34 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
35 |
|
xmetres2 |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ S C_ CC ) -> ( ( abs o. - ) |` ( S X. S ) ) e. ( *Met ` S ) ) |
36 |
34 15 35
|
mp2an |
|- ( ( abs o. - ) |` ( S X. S ) ) e. ( *Met ` S ) |
37 |
|
eqid |
|- ( ( abs o. - ) |` ( S X. S ) ) = ( ( abs o. - ) |` ( S X. S ) ) |
38 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
39 |
38
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
40 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( S X. S ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( S X. S ) ) ) |
41 |
37 39 40
|
metrest |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) = ( MetOpen ` ( ( abs o. - ) |` ( S X. S ) ) ) ) |
42 |
34 15 41
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( MetOpen ` ( ( abs o. - ) |` ( S X. S ) ) ) |
43 |
42 39
|
metcnp |
|- ( ( ( ( abs o. - ) |` ( S X. S ) ) e. ( *Met ` S ) /\ ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. S ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 1 ) <-> ( F : S --> CC /\ A. r e. RR+ E. w e. RR+ A. y e. S ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r ) ) ) ) |
44 |
36 34 10 43
|
mp3an12i |
|- ( ph -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 1 ) <-> ( F : S --> CC /\ A. r e. RR+ E. w e. RR+ A. y e. S ( ( 1 ( ( abs o. - ) |` ( S X. S ) ) y ) < w -> ( ( F ` 1 ) ( abs o. - ) ( F ` y ) ) < r ) ) ) ) |
45 |
7 33 44
|
mpbir2and |
|- ( ph -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
46 |
45
|
ad2antrr |
|- ( ( ( ph /\ y e. S ) /\ y = 1 ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
47 |
|
simpr |
|- ( ( ( ph /\ y e. S ) /\ y = 1 ) -> y = 1 ) |
48 |
47
|
fveq2d |
|- ( ( ( ph /\ y e. S ) /\ y = 1 ) -> ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) = ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
49 |
46 48
|
eleqtrrd |
|- ( ( ( ph /\ y e. S ) /\ y = 1 ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
50 |
|
eldifsn |
|- ( y e. ( S \ { 1 } ) <-> ( y e. S /\ y =/= 1 ) ) |
51 |
9
|
simprd |
|- ( ph -> ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
52 |
|
abscl |
|- ( w e. CC -> ( abs ` w ) e. RR ) |
53 |
52
|
adantl |
|- ( ( ph /\ w e. CC ) -> ( abs ` w ) e. RR ) |
54 |
53
|
a1d |
|- ( ( ph /\ w e. CC ) -> ( ( abs ` w ) < 1 -> ( abs ` w ) e. RR ) ) |
55 |
|
absge0 |
|- ( w e. CC -> 0 <_ ( abs ` w ) ) |
56 |
55
|
adantl |
|- ( ( ph /\ w e. CC ) -> 0 <_ ( abs ` w ) ) |
57 |
56
|
a1d |
|- ( ( ph /\ w e. CC ) -> ( ( abs ` w ) < 1 -> 0 <_ ( abs ` w ) ) ) |
58 |
1 2
|
abelthlem1 |
|- ( ph -> 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |
59 |
58
|
adantr |
|- ( ( ph /\ w e. CC ) -> 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |
60 |
53
|
rexrd |
|- ( ( ph /\ w e. CC ) -> ( abs ` w ) e. RR* ) |
61 |
|
1re |
|- 1 e. RR |
62 |
|
rexr |
|- ( 1 e. RR -> 1 e. RR* ) |
63 |
61 62
|
mp1i |
|- ( ( ph /\ w e. CC ) -> 1 e. RR* ) |
64 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
65 |
|
eqid |
|- ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) = ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) |
66 |
|
eqid |
|- sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) = sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) |
67 |
65 1 66
|
radcnvcl |
|- ( ph -> sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. ( 0 [,] +oo ) ) |
68 |
64 67
|
sselid |
|- ( ph -> sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
69 |
68
|
adantr |
|- ( ( ph /\ w e. CC ) -> sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
70 |
|
xrltletr |
|- ( ( ( abs ` w ) e. RR* /\ 1 e. RR* /\ sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) -> ( ( ( abs ` w ) < 1 /\ 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) -> ( abs ` w ) < sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |
71 |
60 63 69 70
|
syl3anc |
|- ( ( ph /\ w e. CC ) -> ( ( ( abs ` w ) < 1 /\ 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) -> ( abs ` w ) < sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |
72 |
59 71
|
mpan2d |
|- ( ( ph /\ w e. CC ) -> ( ( abs ` w ) < 1 -> ( abs ` w ) < sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |
73 |
54 57 72
|
3jcad |
|- ( ( ph /\ w e. CC ) -> ( ( abs ` w ) < 1 -> ( ( abs ` w ) e. RR /\ 0 <_ ( abs ` w ) /\ ( abs ` w ) < sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) |
74 |
|
0cn |
|- 0 e. CC |
75 |
17
|
cnmetdval |
|- ( ( 0 e. CC /\ w e. CC ) -> ( 0 ( abs o. - ) w ) = ( abs ` ( 0 - w ) ) ) |
76 |
74 75
|
mpan |
|- ( w e. CC -> ( 0 ( abs o. - ) w ) = ( abs ` ( 0 - w ) ) ) |
77 |
|
abssub |
|- ( ( 0 e. CC /\ w e. CC ) -> ( abs ` ( 0 - w ) ) = ( abs ` ( w - 0 ) ) ) |
78 |
74 77
|
mpan |
|- ( w e. CC -> ( abs ` ( 0 - w ) ) = ( abs ` ( w - 0 ) ) ) |
79 |
|
subid1 |
|- ( w e. CC -> ( w - 0 ) = w ) |
80 |
79
|
fveq2d |
|- ( w e. CC -> ( abs ` ( w - 0 ) ) = ( abs ` w ) ) |
81 |
76 78 80
|
3eqtrd |
|- ( w e. CC -> ( 0 ( abs o. - ) w ) = ( abs ` w ) ) |
82 |
81
|
breq1d |
|- ( w e. CC -> ( ( 0 ( abs o. - ) w ) < 1 <-> ( abs ` w ) < 1 ) ) |
83 |
82
|
adantl |
|- ( ( ph /\ w e. CC ) -> ( ( 0 ( abs o. - ) w ) < 1 <-> ( abs ` w ) < 1 ) ) |
84 |
|
0re |
|- 0 e. RR |
85 |
|
elico2 |
|- ( ( 0 e. RR /\ sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) -> ( ( abs ` w ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) <-> ( ( abs ` w ) e. RR /\ 0 <_ ( abs ` w ) /\ ( abs ` w ) < sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) |
86 |
84 69 85
|
sylancr |
|- ( ( ph /\ w e. CC ) -> ( ( abs ` w ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) <-> ( ( abs ` w ) e. RR /\ 0 <_ ( abs ` w ) /\ ( abs ` w ) < sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) |
87 |
73 83 86
|
3imtr4d |
|- ( ( ph /\ w e. CC ) -> ( ( 0 ( abs o. - ) w ) < 1 -> ( abs ` w ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) |
88 |
87
|
imdistanda |
|- ( ph -> ( ( w e. CC /\ ( 0 ( abs o. - ) w ) < 1 ) -> ( w e. CC /\ ( abs ` w ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) ) |
89 |
|
1xr |
|- 1 e. RR* |
90 |
|
elbl |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ 1 e. RR* ) -> ( w e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( w e. CC /\ ( 0 ( abs o. - ) w ) < 1 ) ) ) |
91 |
34 74 89 90
|
mp3an |
|- ( w e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( w e. CC /\ ( 0 ( abs o. - ) w ) < 1 ) ) |
92 |
|
absf |
|- abs : CC --> RR |
93 |
|
ffn |
|- ( abs : CC --> RR -> abs Fn CC ) |
94 |
|
elpreima |
|- ( abs Fn CC -> ( w e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) <-> ( w e. CC /\ ( abs ` w ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) ) |
95 |
92 93 94
|
mp2b |
|- ( w e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) <-> ( w e. CC /\ ( abs ` w ) e. ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) |
96 |
88 91 95
|
3imtr4g |
|- ( ph -> ( w e. ( 0 ( ball ` ( abs o. - ) ) 1 ) -> w e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) ) |
97 |
96
|
ssrdv |
|- ( ph -> ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) |
98 |
51 97
|
sstrd |
|- ( ph -> ( S \ { 1 } ) C_ ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) ) |
99 |
98
|
resmptd |
|- ( ph -> ( ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( S \ { 1 } ) ) = ( x e. ( S \ { 1 } ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) ) |
100 |
6
|
reseq1i |
|- ( F |` ( S \ { 1 } ) ) = ( ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( S \ { 1 } ) ) |
101 |
|
difss |
|- ( S \ { 1 } ) C_ S |
102 |
|
resmpt |
|- ( ( S \ { 1 } ) C_ S -> ( ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( S \ { 1 } ) ) = ( x e. ( S \ { 1 } ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) ) |
103 |
101 102
|
ax-mp |
|- ( ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( S \ { 1 } ) ) = ( x e. ( S \ { 1 } ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
104 |
100 103
|
eqtri |
|- ( F |` ( S \ { 1 } ) ) = ( x e. ( S \ { 1 } ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
105 |
99 104
|
eqtr4di |
|- ( ph -> ( ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( S \ { 1 } ) ) = ( F |` ( S \ { 1 } ) ) ) |
106 |
|
cnvimass |
|- ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) C_ dom abs |
107 |
92
|
fdmi |
|- dom abs = CC |
108 |
106 107
|
sseqtri |
|- ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) C_ CC |
109 |
108
|
sseli |
|- ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) -> x e. CC ) |
110 |
|
fveq2 |
|- ( n = j -> ( A ` n ) = ( A ` j ) ) |
111 |
|
oveq2 |
|- ( n = j -> ( x ^ n ) = ( x ^ j ) ) |
112 |
110 111
|
oveq12d |
|- ( n = j -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` j ) x. ( x ^ j ) ) ) |
113 |
112
|
cbvsumv |
|- sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ j e. NN0 ( ( A ` j ) x. ( x ^ j ) ) |
114 |
65
|
pserval2 |
|- ( ( x e. CC /\ j e. NN0 ) -> ( ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` x ) ` j ) = ( ( A ` j ) x. ( x ^ j ) ) ) |
115 |
114
|
sumeq2dv |
|- ( x e. CC -> sum_ j e. NN0 ( ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` x ) ` j ) = sum_ j e. NN0 ( ( A ` j ) x. ( x ^ j ) ) ) |
116 |
113 115
|
eqtr4id |
|- ( x e. CC -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ j e. NN0 ( ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` x ) ` j ) ) |
117 |
109 116
|
syl |
|- ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ j e. NN0 ( ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` x ) ` j ) ) |
118 |
117
|
mpteq2ia |
|- ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) = ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ j e. NN0 ( ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` x ) ` j ) ) |
119 |
|
eqid |
|- ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) = ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |
120 |
|
eqid |
|- if ( sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` v ) + sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` v ) + 1 ) ) = if ( sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` v ) + sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` v ) + 1 ) ) |
121 |
65 118 1 66 119 120
|
psercn |
|- ( ph -> ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) e. ( ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) -cn-> CC ) ) |
122 |
|
rescncf |
|- ( ( S \ { 1 } ) C_ ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) -> ( ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) e. ( ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) -cn-> CC ) -> ( ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( S \ { 1 } ) ) e. ( ( S \ { 1 } ) -cn-> CC ) ) ) |
123 |
98 121 122
|
sylc |
|- ( ph -> ( ( x e. ( `' abs " ( 0 [,) sup ( { r e. RR | seq 0 ( + , ( ( t e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( t ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) ) |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |` ( S \ { 1 } ) ) e. ( ( S \ { 1 } ) -cn-> CC ) ) |
124 |
105 123
|
eqeltrrd |
|- ( ph -> ( F |` ( S \ { 1 } ) ) e. ( ( S \ { 1 } ) -cn-> CC ) ) |
125 |
124
|
adantr |
|- ( ( ph /\ y e. ( S \ { 1 } ) ) -> ( F |` ( S \ { 1 } ) ) e. ( ( S \ { 1 } ) -cn-> CC ) ) |
126 |
101 15
|
sstri |
|- ( S \ { 1 } ) C_ CC |
127 |
|
ssid |
|- CC C_ CC |
128 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) = ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) |
129 |
38
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
130 |
129
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
131 |
38 128 130
|
cncfcn |
|- ( ( ( S \ { 1 } ) C_ CC /\ CC C_ CC ) -> ( ( S \ { 1 } ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) Cn ( TopOpen ` CCfld ) ) ) |
132 |
126 127 131
|
mp2an |
|- ( ( S \ { 1 } ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) Cn ( TopOpen ` CCfld ) ) |
133 |
125 132
|
eleqtrdi |
|- ( ( ph /\ y e. ( S \ { 1 } ) ) -> ( F |` ( S \ { 1 } ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) Cn ( TopOpen ` CCfld ) ) ) |
134 |
|
simpr |
|- ( ( ph /\ y e. ( S \ { 1 } ) ) -> y e. ( S \ { 1 } ) ) |
135 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( S \ { 1 } ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) e. ( TopOn ` ( S \ { 1 } ) ) ) |
136 |
129 126 135
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) e. ( TopOn ` ( S \ { 1 } ) ) |
137 |
136
|
toponunii |
|- ( S \ { 1 } ) = U. ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) |
138 |
137
|
cncnpi |
|- ( ( ( F |` ( S \ { 1 } ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) Cn ( TopOpen ` CCfld ) ) /\ y e. ( S \ { 1 } ) ) -> ( F |` ( S \ { 1 } ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
139 |
133 134 138
|
syl2anc |
|- ( ( ph /\ y e. ( S \ { 1 } ) ) -> ( F |` ( S \ { 1 } ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
140 |
38
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
141 |
|
cnex |
|- CC e. _V |
142 |
141 15
|
ssexi |
|- S e. _V |
143 |
|
restabs |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( S \ { 1 } ) C_ S /\ S e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( S \ { 1 } ) ) = ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) ) |
144 |
140 101 142 143
|
mp3an |
|- ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( S \ { 1 } ) ) = ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) |
145 |
144
|
oveq1i |
|- ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) = ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) |
146 |
145
|
fveq1i |
|- ( ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) ` y ) = ( ( ( ( TopOpen ` CCfld ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) ` y ) |
147 |
139 146
|
eleqtrrdi |
|- ( ( ph /\ y e. ( S \ { 1 } ) ) -> ( F |` ( S \ { 1 } ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
148 |
|
resttop |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ S e. _V ) -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
149 |
140 142 148
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t S ) e. Top |
150 |
149
|
a1i |
|- ( ( ph /\ y e. ( S \ { 1 } ) ) -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
151 |
101
|
a1i |
|- ( ( ph /\ y e. ( S \ { 1 } ) ) -> ( S \ { 1 } ) C_ S ) |
152 |
10
|
snssd |
|- ( ph -> { 1 } C_ S ) |
153 |
38
|
cnfldhaus |
|- ( TopOpen ` CCfld ) e. Haus |
154 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
155 |
154
|
sncld |
|- ( ( ( TopOpen ` CCfld ) e. Haus /\ 1 e. CC ) -> { 1 } e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
156 |
153 14 155
|
mp2an |
|- { 1 } e. ( Clsd ` ( TopOpen ` CCfld ) ) |
157 |
154
|
restcldi |
|- ( ( S C_ CC /\ { 1 } e. ( Clsd ` ( TopOpen ` CCfld ) ) /\ { 1 } C_ S ) -> { 1 } e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t S ) ) ) |
158 |
15 156 157
|
mp3an12 |
|- ( { 1 } C_ S -> { 1 } e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t S ) ) ) |
159 |
154
|
restuni |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ S C_ CC ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
160 |
140 15 159
|
mp2an |
|- S = U. ( ( TopOpen ` CCfld ) |`t S ) |
161 |
160
|
cldopn |
|- ( { 1 } e. ( Clsd ` ( ( TopOpen ` CCfld ) |`t S ) ) -> ( S \ { 1 } ) e. ( ( TopOpen ` CCfld ) |`t S ) ) |
162 |
152 158 161
|
3syl |
|- ( ph -> ( S \ { 1 } ) e. ( ( TopOpen ` CCfld ) |`t S ) ) |
163 |
160
|
isopn3 |
|- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. Top /\ ( S \ { 1 } ) C_ S ) -> ( ( S \ { 1 } ) e. ( ( TopOpen ` CCfld ) |`t S ) <-> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( S \ { 1 } ) ) = ( S \ { 1 } ) ) ) |
164 |
149 101 163
|
mp2an |
|- ( ( S \ { 1 } ) e. ( ( TopOpen ` CCfld ) |`t S ) <-> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( S \ { 1 } ) ) = ( S \ { 1 } ) ) |
165 |
162 164
|
sylib |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( S \ { 1 } ) ) = ( S \ { 1 } ) ) |
166 |
165
|
eleq2d |
|- ( ph -> ( y e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( S \ { 1 } ) ) <-> y e. ( S \ { 1 } ) ) ) |
167 |
166
|
biimpar |
|- ( ( ph /\ y e. ( S \ { 1 } ) ) -> y e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( S \ { 1 } ) ) ) |
168 |
7
|
adantr |
|- ( ( ph /\ y e. ( S \ { 1 } ) ) -> F : S --> CC ) |
169 |
160 154
|
cnprest |
|- ( ( ( ( ( TopOpen ` CCfld ) |`t S ) e. Top /\ ( S \ { 1 } ) C_ S ) /\ ( y e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` ( S \ { 1 } ) ) /\ F : S --> CC ) ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) <-> ( F |` ( S \ { 1 } ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) |
170 |
150 151 167 168 169
|
syl22anc |
|- ( ( ph /\ y e. ( S \ { 1 } ) ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) <-> ( F |` ( S \ { 1 } ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t S ) |`t ( S \ { 1 } ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) |
171 |
147 170
|
mpbird |
|- ( ( ph /\ y e. ( S \ { 1 } ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
172 |
50 171
|
sylan2br |
|- ( ( ph /\ ( y e. S /\ y =/= 1 ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
173 |
172
|
anassrs |
|- ( ( ( ph /\ y e. S ) /\ y =/= 1 ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
174 |
49 173
|
pm2.61dane |
|- ( ( ph /\ y e. S ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
175 |
174
|
ralrimiva |
|- ( ph -> A. y e. S F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
176 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
177 |
129 15 176
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) |
178 |
|
cncnp |
|- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) <-> ( F : S --> CC /\ A. y e. S F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) ) |
179 |
177 129 178
|
mp2an |
|- ( F e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) <-> ( F : S --> CC /\ A. y e. S F e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) |
180 |
7 175 179
|
sylanbrc |
|- ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) ) |
181 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
182 |
38 181 130
|
cncfcn |
|- ( ( S C_ CC /\ CC C_ CC ) -> ( S -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) ) |
183 |
15 127 182
|
mp2an |
|- ( S -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) |
184 |
180 183
|
eleqtrrdi |
|- ( ph -> F e. ( S -cn-> CC ) ) |